CAN-шина в промышленных сетях. Максимальная длина кабеля


CAN (Controller Area Network - "область, охваченная сетью контроллеров") представляет собой комплекс стандартов для построения распределенных промышленных сетей, который использует последовательную передачу данных в реальном времени с очень высокой степенью надежности и защищенности. Центральное место в CAN занимает протокол канального уровня модели OSI. Первоначально CAN был разработан для автомобильной промышленности, но в настоящее время быстро внедряется в область промышленной автоматизации. Это хорошо продуманный, современный и многообещающий сетевой протокол. Начало развития CAN было положено компанией Bosch в 1983 г., первые микросхемы CANконтроллеров были выпущены фирмами Intel и Philipsв 1987 году, в настоящее время контроллеры и трансиверы CANвыпускаются многими фирмами, в том числе Analog Devices, Inc., Atmel Corp. Cast, Dallas Semiconductor, Freescale, Infineon, Inicore Inc., Intel, Linear Technology, Maxim Integrated Products, Melexis, Microchip, National Semiconductor, NXP, OKI, Renesas Technology Corp., STMicroelectronics, Yamar Electronics, Texas Instruments.

В России интерес к CAN за последние годы сильно возрос, однако контроллерного оборудования для CAN в России крайне мало, в десятки или сотни раз меньше, чем для Modbus или Profibus. Среди протоколов прикладного уровня для работы с CAN наибольшее распространение в России получили CANopen и DeviceNet.

В настоящее время CAN поддерживается 11-ю стандартами ISO, в том числе [ISO - Diagnostics ].

CAN охватывает два style="color:red"> уровня модели OSI: физический и канальный (табл. 2.7). Стандарт не предусматривает никакого протокола прикладного (7-го) уровня модели OSI. Поэтому для его воплощения в жизнь различные фирмы разработали несколько таких протоколов: CANopen (организации CiA), SDS (фирмы Honeywell Micro Switch Division), CAN Kingdom (фирмы Kvaser), DeviceNet (фирмы Allen-Bradley, ставший Европейским стандартом в 2002 г.) и ряд других [Грибанов - Третьяков ].

CAN характеризуется следующими основными свойствами:

  • каждому сообщению (а не устройству) устанавливается свой приоритет ;
  • гарантированная величина паузы между двумя актами обмена;
  • гибкость конфигурирования и возможность модернизации системы;
  • широковещательный прием сообщений с синхронизацией времени;
  • непротиворечивость данных на уровне всей системы;
  • допустимость нескольких ведущих устройств в сети ("многомастерная сеть");
  • способность к обнаружению ошибок и сигнализации об их наличии;
  • автоматический повтор передачи сообщений, доставленных с ошибкой, сразу, как только сеть станет свободной;
  • автоматическое различение сбоев и отказов с возможностью автоматического отключения отказавших модулей.

К недостаткам можно отнести сравнительно высокую стоимость CAN-устройств, отсутствие единого протокола прикладного уровня, а также чрезмерную сложность и запутанность протоколов канального и прикладного уровня, изложенных в стандартах организации CAN in Automation (CiA).

2.6.1. Физический уровень

Где - длительность переднего фронта передатчика. Основные требования к линии передачи и ее характеристикам близки к RS-485, однако в передатчиках CAN есть режим управления длительностью фронтов импульсов. Управление выполняется путем заряда емкостей затворов выходных транзисторов от источников тока, при этом величина тока задается внешним резистором. Увеличение длительности фронта позволяет снизить требования к согласованию линии на низких частотах, увеличить длину отводов и ослабить излучение электромагнитных помех.

Выводы "земли" всех передатчиков сети должны быть соединены (если интерфейсы гальванически не изолированы). При этом разность потенциалов между выводами заземлений не должна превышать 2 В. Гальваническая изоляция рекомендуется при длине линии более 200 м, но не является обязательным требованием стандарта.

Для электрического соединения устройств с CAN интерфейсом стандарт предусматривает два варианта. Первый вариант состоит в применении Т-образных разветвителей, которые состоят из трех 9-штырьковых разъемов D-sub, расположенных в одном корпусе, одноименные контакты которых соединены между собой. Разветвители имеют один разъем со штырьками и два - с гнездами.

Второй вариант требует наличия в каждом CAN-устройстве двух разъемов. Для включения устройства в сеть кабель разрезают и на его концах устанавливают ответные части разъемов. Устройство включается буквально в разрыв линии передачи. Такой подход позволяет наращивать количество устройств и изменять топологию сети путем добавления в разрыв кабеля новых устройств и кабеля с разъемами на концах. Один из разъемов должен быть со штырьками, второй - с гнездами. Подключение устройств к шине без разъемов не допускается. Согласующий резистор должен располагаться внутри разъема, который подключается к концу кабеля. Для присоединения модулей к CAN-шине должен использоваться 9-штырьковый разъем типа D- Sub. На модуле устанавливается разъем с гнездами, на соединяющем кабеле - со штырьками. Цоколевка разъемов показана в табл. 2.8 .

Применение разъемов со штырьками или гнездами определяется следующим правилом: при "горячей" замене модулей питание должно оставаться только на разъемах с гнездами; это позволяет избежать случайного короткого замыкания.

Отметим, что в основанном на CAN стандарте CANopen предусмотрено гораздо большее разнообразие вариантов разъемов, в том числе для плоского кабеля, RJ-10, RJ45, разъемный винтовой клеммник, и еще около десяти вариантов специальной конструкции [Cabling ]. Допускается применение и других разъемов.

Это свойство CAN обеспечивает возможность получения доступа к линии, сравнивая посылаемые в линию логические уровни с тем уровнем, который фактически устанавливается в ней: если передатчик посылает в линию рецессивное состояние, а в ней при этом остается доминантное, значит линия занята. Доступ получает тот узел сети, который может предоставить ей доминантный уровень сигнала. Узлы с рецессивным уровнем покидают линию и ждут следующего случая. Этот метод доступа справедлив и при использовании оптоволоконного канала или беспроводной сети - в этих случаях наличие света или электромагнитной волны всегда будет доминировать над их отсутствием.

Вывод на рис. 2.20 позволяет установить пороговое напряжение для входа и уровень синфазного напряжения в линии, когда она находится в рецессивном состоянии. Обычно = 2,5 В. Чтобы установить уровень синфазного напряжения на линии, терминальные сопротивления делят на два по 60 Ом, соединяют их последовательно, а к точке соединения подключают вывод . При симметричной форме импульсов и относительно рецессивного состояния уменьшается уровень излучаемых помех, поскольку приращения токов в каждом из проводов витой пары при переключении логических уровней (см. рис. 2.21) оказываются равными по величине, но обратными по знаку и поэтому компенсируют друг-друга.

Вывод имеет несколько назначений. Если на нем установлено состояние логической единицы, трансивер переходит в спящий режим, при котором он потребляет очень малый ток от источника питания, а на выходе устанавливается высокоомное (рецессивное) состояние. "Разбудить" его можно сигналом, поступающим в приемник из линии передачи. Подключение этого вывода к "земле" через сопротивление позволяет установить нужную длительность фронтов импульсов передатчика. Некоторые трансиверы имеют два режима: резервный и спящий, которые отличаются уровнем потребляемого тока и способом перевода в активный режим. Режим пониженного энергопотребления предусмотрен стандартом для экономии заряда аккумуляторных батарей в припаркованном автомобиле.

Рис. 2.21. Пояснение понятий рецессивного и доминантного состояния

Если сигнал является доминирующим слишком долго (более 1 мс), генератор импульса таймаута (на рис. 2.20 обозначен прямоугольником с импульсом) временно отключает передатчик, поскольку в противном случае модуль может быть навсегда блокирован средствами канального уровня как отказавший.

Стандартом предусмотрена возможность подключения к CAN сети любого количества устройств, однако практически оно ограничивается нагрузочной способностью передатчиков (100...200) или задержкой в повторителях.

В CAN-трансивере имеется генератор синхроимпульсов с частотой 16 МГц ±0,1%. Ширина одного бита программно устанавливается величиной от 8 до 25 импульсов синхрогенератора, обычно 8 импульсов при скорости передачи 1 Мбит/с и 16 импульсов при 20 кбит/с. Синхронизация всех узлов сети происходит в течение первого такта синхронизации. Процедура обработки битов в приемнике обеспечивает программируемую задержку импульсов синхронизации, необходимую для компенсации времени задержки прохождения сигнала в линии связи и сдвига фазы вследствие дрейфа частоты тактового генератора.

Различают два типа синхронизации: жесткую синхронизацию с помощью стартового бита в начале сообщения и ресинхронизацию во время передачи сообщения. С помощью ресинхронизации можно подстроить интервал времени от начала синхронизации до момента, в который измеряется логический уровень принимаемого импульса данных. Интервал подстройки может быть изменен на 1...4 такта.

Для определения логического состояния шины уровни принимаемых сигналов измеряются на расстоянии 6-ти тактов синхрогенератора от переднего фронта импульса (бита) при скорости 1 Мбит/с и на расстоянии 14-ти тактов при скорости 20 кбит/с [CAN ] (для сравнения укажем, что в стандартных UART отсчеты берутся посередине импульса). Количество отсчетов может быть 1 или 3 (устанавливается программно). CAN использует синхронную передачу битов. Это повышает пропускную способность канала связи, но требует усложненного процесса синхронизации.

Канальный уровень CAN, рассмотренный выше, практически невозможно использовать в SCADA-пакетах, поскольку он оперирует битами, фреймами, полями. Для написания же прикладных программ нужно использовать понятия: переменная, массив, событие, клиент, сервер, имя устройства и т. п.

Рассмотрим наиболее распространенный стандарт прикладного уровня CANopen [CANopen ]. Для упрощения применения стандарта вводятся несколько специфических для CANopen понятий. Все функциональные возможности прикладного уровня делятся между так называемыми сервисами (элементами услуг). Программные приложения взаимодействуют между собой путем вызова соответствующих сервисов прикладного уровня. Сервисы обмениваются данными с равными им (одноранговыми) сервисами через CAN-сеть с помощью определенного протокола. Этот протокол описывается в спецификации протокола сервиса.

Вводится понятие сервисного примитива , который представляет собой средство (языковую конструкцию), с помощью которого программное приложение взаимодействует с прикладным уровнем. В CANopen существует четыре различных примитива:

  • запрос приложения к прикладному уровню, публикуемый приложением для вызова сервиса;
  • индикация , публикуемая прикладным уровнем для приложения, чтобы сообщить о внутренних событиях, обнаруженных прикладным уровнем или чтобы показать, что сервис запрошен;
  • ответ , публикуемый приложением для прикладного уровня, чтобы ответить на ранее полученную индикацию;
  • подтверждение , публикуемое прикладным уровнем для приложения, чтобы отчитаться о результатах ранее изданного запроса.

Сетевой интерфейс CAN (Controller Area Network) был разработан в 1987г. (версия 1.0) фирмами BOSCH и INTEL для создания бортовых мультипроцессорных систем реального времени. Последняя спецификация интерфейса 2.0, разработанная фирмой BOSCH в 1992г., является дополнением предыдущей версии. В международной организации по стандартизации зарегистрирован ISO 11898 (для высокоскоростных приложений) и ISO 11519-2 (для низкоскоростных приложений).

Принцип работы

CAN является высокоинтегрированным сетевым интерфейсом передачи данных со скоростью до 1 Мбит/сек. Устройства в CAN-системе соединяются по шине, состоящей из 3-х проводов (2 сигнальных и один общий) (см. рис.).

Сообщения данных, передаваемые из любого узла по CAN-шине, могут содержать от 1 до 8 байт. Каждое сообщение помечено идентификатором, который в сети является уникальным (например: "Нагрев до 240", "Отказ нагрева","Бункер загружен", и т.д.). При передаче другие узлы сети получают сообщение и каждый из них проверяет идентификатор. Если сообщение имеет отношение к данному узлу, то оно обрабатывается, в противном случае - игнорируется. CAN-контроллер каждого из устройств может обрабатывать одновременно несколько идентификаторов (например, контроллеры SIEMENS и INTEL могут обрабатывать до 15). Таким образом, в каждом из устройств можно легко организовать несколько "виртуальных" каналов обмена информацией с различными устройствами, включая каналы одновременного получения сообщений.

Рис. 1. Соединение устройств по CAN-шине

Идентификаторы

Идентификатор определяет тип и приоритет сообщения. Более низкому числовому значению идентификатора соответствует более высокое значение приоритета. Сообщение, имеющее более высокий приоритет, передается раньше сообщения, имеющего более низкий приоритет. После сообщения с высоким приоритетом передается сообщение с более низким приоритетом, если во время передачи не появится сообщение с более высоким приоритетом, затем передается сообщение с еще более низким приоритетом и т. д.

Физическая шина

Представляет собой витую пару (экранированную или неэкранированную) и общий провод. Плоская пара (телефонный тип кабеля) также работает хорошо, но более чувствительна к внешним источникам шума.

Высокая надёжность

Для обеспечения безотказной работы в тяжёлых условиях по стандарту ISO11898 CAN-контроллер обеспечивает работу в сети в следующих случаях:

  • любой из 3-х проводов в шине оборван,
  • любой провод - закорочен на питание,
  • любой провод - закорочен на общий провод.

При обрыве 2-х проводов часть функций основной системы может быть реализована в каждой из подсистем, созданных обрывом.

Сетевая гибкость и лёгкость расширения

Принятая в CAN-сети схема передачи сообщений обеспечивает большие возможности при создании, расширении и модернизации систем.

Новые устройства, предназначенные для приёма данных, могут добавляться к сети без изменения уже существующих программных средств, если их подключение не приводит к превышению нагрузочной способности и максимальной длины шины. При этом новые сетевые устройства способны обмениваться информацией между собой, не нарушая работоспособность старой системы, если в протоколе обмена были использованы новые идентификаторы.

В CAN-сети имеется возможность одновременной передачи сообщений сразу нескольким устройствам. Эта особенность позволяет передавать по ней синхросигналы.

Арбитраж CAN-шины

В любой системе некоторые из параметров изменяются быстрее, чем другие. Например, скорость ротора двигателя, как правило, изменяется за меньший промежуток времени, чем температура его корпуса или положение заслонки. Быстро изменяющиеся параметры должны передаваться более часто и, следовательно, требуют более высокого приоритета. Во время работы также возможно появление аварийных сообщений, которые должны передаваться с наивысшим приоритетом (например, превышение допустимой температуры, обрыв управляющего соленоида, короткое замыкание в цепи и т.д.).

Узлы CAN-сети являются равноправными при обмене, и каждый из них в любой момент времени может иметь сообщение, требующее безотлагательной передачи. Вероятность одновременного требования передачи от различных устройств не является чем-то необычайным, а случается регулярно. Для разрешения подобного конфликта требуется быстродействующий механизм распределения очередности передачи сообщений. Для этого в CAN-системе используется Неразрушающий Поразрядный Арбитраж .

Приоритет CAN-сообщения определяется двоичным значением его идентификатора.

Числовое значение каждого идентификатора сообщения назначается в начальной фазе проектирования системы. Идентификатор с самым низким числовым значением идентификатора имеет самый высокий приоритет. Передача логического нуля по CAN-шине осуществляется токовой посылкой, а состояние логической единицы определяется по отсутствию тока. В процессе передачи каждый из источников сообщений, который имеет необходимость в передаче, начинает передавать свой идентификатор, одновременно проверяя его на линии. Если в процессе передачи обнаруживается несовпадение (т.е. "лишний" ноль), то передатчик, обнаруживший это несоответствие, прекращает передачу своего идентификатора и переключается на прием. Конфликта на шине при этом нет, так как значение бита с уровнем логической единицы фактически не передается, и в результате сообщение с наивысшим приоритетом проходит по шине так, как будто оно единственное. В следующем цикле шины будет передано сообщение с более низким приоритетом, и т.д. Таким образом достигается максимальная пропускная способность шины и минимальная задержка для "горячих" сообщений.

Рис. 2. Соединение устройств по CAN-шине

Обнаружение Ошибок

CAN содержит 5-ступенчатый механизм обнаружения ошибок:

  • циклический контроль по избыточности (CRC),
  • контроль передаваемого поля битов,
  • контроль сигнала "Подтверждение Приема",
  • текущий контроль логического уровня битов,
  • контроль заполнения битов.

Циклический контроль по избыточности (CRC)

Каждое переданное сообщение содержит контрольный код (CRC), вычисленный передатчиком на основе содержания передаваемого сообщения. Приёмные узлы выполняют аналогичную операцию, помечают обнаруженные ошибки и устанавливают соответствующие флаги.

Текущий контроль логического уровня битов

Любой передатчик автоматически контролирует и сравнивает фактический логический уровень битов на шине с уровнем, который он передает. Если уровни не совпадают, помечается ошибка логического уровня битов.

(Примечание: этот механизм также используется при арбитраже шины для определения приоритета сообщения, однако ошибка в этом случае, естественно, не возникает).

Контроль передаваемого поля битов

В составе CAN-сообщения передаются предопределенные битовые комбинации, которые контролируются при приёме. Если приемник обнаруживает недопустимый бит в одной из этих комбинаций, то устанавливается флаг ошибки формата.

Контроль заполнения битов

CAN использует методику добавления заполняющего бита для дополнительного контроля передаваемых сообщений. После передачи пяти последовательных битов с одинаковым уровнем передатчик автоматически вводит в разрядный поток бит противоположного значения. Приемники сообщения автоматически удаляют такие биты перед обработкой сообщения. Если обнаруживается шестой бит одинаковой полярности, то помечается ошибка заполнения битов.

Контроль сигнала "Подтверждение Приема"

Каждое переданное сообщение подтверждается приемником, и если этого не произошло, тогда устанавливается флаг ошибки подтверждения приема.

Флаг ошибки

В случае если обнаружена ошибка, то узел, обнаруживший ошибку, прерывает передачу посылкой флага ошибки. При этом передатчик автоматически реинициализирует передачу сообщения, что предотвращает все узлы от возникновения ошибок и гарантирует непротиворечивость данных в сети.

С учетом действия всех механизмов контроля, реальное значение возникновения необнаруженной ошибки в CAN-системе - 10-11 .

Формат CAN-сообщения

Стандартный CAN-протокол (версия 2.0A) поддерживает формат сообщения с 11-разрядными идентификаторами (Стандартное сообщение).

Расширенный CAN-протокол (версия 2.0B) поддерживает 11-битовый и 29-битовый форматы идентификаторов (Расширенное сообщение).

Большинство контроллеров версии 2.0A передают и принимают только сообщения стандартного формата, хотя часть из них могут только получать сообщения расширенного формата.

Контроллеры версии 2.0B могут посылать и получать сообщения в обоих форматах.

Различия форматов

В версии 2.0B поле битов идентификатора состоит из двух частей.

Первая часть (основная часть идентификатора) имеет длину одиннадцать битов для совместимости с версией 2.0A, вторая часть - восемнадцать битов (расширение идентификатора), что дает общую длину идентификатора в двадцать девять бит.

Для различения форматов используются биты Identifier Extension (IDE) и Substitute Remote Request (SRR) в Поле Арбитража.

Администратор

Необходимость последовательного соединения в автомобилях

Это следующая наша переводная статья из цикла посвященного шине CAN, которая еще чуть более подробно раскрывает то, как устроена и функционирует шина КАН. Англоязычный оригинал.

Многие автомобили уже имеют большое количество электронных систем управления. Рост автомобильной электроники является результатом отчасти стремления потребителя к большей безопасности и комфорту, а также отчасти требований правительства по улучшению контроля за выбросами и снижению расхода топлива. Управляющие устройства, отвечающие этим требованиям уже используются в течение некоторого времени в области управления двигателем, коробкой передач и дроссельной заслонкой, а также в антиблокировочных системах (ABS) и системе управления ускорением (ASC) .

Сложность функций, реализованных в этих системах, требует обмена данными между ними. В традиционных системах обмен данными осуществляется с помощью выделенных сигнальных линий, но это становится все труднее и дороже, так как функции управления становятся все более сложными. В случае сложных систем управления (таких как Motronic), в частности, количество соединений не может больше увеличиваться.

Кроме того, разрабатывается ряд систем, реализующих функции, охватывающие более одного управляющего устройства. Например, ASC требует взаимодействия системы управления двигателем и управления дросселем (впрыском) для уменьшения крутящего момента при проскальзывании ведущего колеса. Другим примером функций, охватывающих более одного блока управления, является электронное управление коробкой передач, где легкость переключения передач может быть улучшена путем кратковременной регулировки опережения зажигания.

Если мы также рассмотрим будущие разработки, направленные на общую оптимизацию транспортных средств, то необходимо преодолеть ограничения, существующие в связи с обычными устройствами управления. Это можно сделать только путем объединения в сеть компонентов системы с использованием последовательной шины данных. Bosch разработал для этой цели систему «Controller Area Network» (CAN), которая с тех пор была стандартизирована на международном уровне (ISO 11898) и была «отлита в камне (в кремнии)» несколькими производителями полупроводников.

Используя CAN, одноранговые (одноуровневые) станции (контроллеры, датчики и исполнительные механизмы) подключаются через последовательную шину. Сама шина является симметричной или асимметричной двухпроводной цепью, которая может быть экранированной или неэкранированной. Электрические параметры физической передачи также указаны в стандарте ISO 11898. Подходящие чипы драйвера шины доступны от большого ряда производителей

Протокол CAN, соответствующий уровню канала передачи данных в эталонной модели ISO / OSI, удовлетворяет требованиям автомобильных для применения в автомобилях настоящего времени. В отличие от кабельных древовидных структур, сетевой протокол обнаруживает и исправляет ошибки передачи, вызванные электромагнитными помехами. Дополнительными преимуществами такой сети являются простота конфигурирования всей системы и возможность центральной диагностики.

Цель использования CAN в транспортных средствах заключается в том, чтобы любая станция могла взаимодействовать с любым другим, не налагая слишком большую нагрузку на компьютер контроллера.

Использование CAN сети в автомобилях

Существует четыре основных приложения для последовательной связи в транспортных средствах, каждое из которых имеет разные требования и цели.

Сетевые контроллеры для синхронизации двигателя, трансмиссии, шасси и тормозов. Скорости передачи данных находятся в диапазоне - типичном для систем реального времени от 200 кбит /с до 1 Мбит /с.
Сетевые компоненты общей электроники и электроники шасси, которые делают автомобиль более комфортным. Примерами таких мультиплексных применений являются управление освещением, кондиционирование воздуха и центральный замок, а также регулировка сиденья и зеркала. Особое значение здесь должно быть уделено стоимости компонентов и требованиям к проводке. Типичная скорость передачи данных составляет около 50 кбит / с.
В ближайшем будущем последовательная связь также будет использоваться в области мобильной связи, чтобы связать такие компоненты, как автомобильные радиоприемники, автомобильные телефоны, навигационные средства и т. д., с центральной более эргономичной панелью управления. Функции, определенные в проекте «Прометей», такие как связь между транспортным средством и транспортным средством, будут в большой степени зависеть от последовательной связи.
В настоящее время CAN используется для первых трех приложений, но для диагностики предпочтительным решением является интерфейс в соответствии со стандартом ISO 9141.

Промышленные применения сети CAN

Сравнение требований к шинным системам транспортных средств и системам промышленных полевых шин показывает удивительные сходства: низкая стоимость, работоспособность в жесткой электрической среде, высокие возможности в реальном времени и простота использования одинаково желательны в обоих секторах.

Стандартное использование CAN в «S-классе» Mercedes-Benz и принятие CAN коммерческими автопроизводителями США для быстрой передачи (до 1 Мбит / с) заставляли промышленных пользователей навострить уши. Не только производители мобильных и стационарных сельскохозяйственных и морских машин и оборудования выбрали CAN, но и выбор производителей медицинской аппаратуры, текстильных машин, а также специальной техники и элементов управления лифтами. Система последовательной шины особенно хорошо подходит для сетевых «интеллектуальных» устройств ввода-вывода, а также датчиков и исполнительных механизмов внутри машины или завода.

Промышленность текстильного машиностроения является одним из пионеров CAN. Один производитель оснастил свои ткацкие станки модульными системами управления, сообщающимися в режиме реального времени через сети CAN еще в 1990 году. Тем временем несколько производителей текстильных машин объединились в группу «CAN Textile Users Group», которая, в свою очередь, является членом международной группы пользователей и производителей «CAN in Automation». Аналогичные требования к текстильному оборудованию имеются в упаковочных машинах и машинах для производства и обработки бумаги.

В США ряд предприятий используют CAN в производственных линиях и станках в качестве внутренней системы шин для сетевых датчиков и исполнительных механизмов внутри линии или непосредственно машины. Некоторые пользователи, такие как сектор медицинской инженерии, решили в пользу CAN, поскольку у них были особенно строгие требования безопасности. С аналогичными проблемами сталкиваются и другие производители машин и оборудования с особыми требованиями в отношении безопасности (например, роботы и транспортные системы).

Помимо высокой надежности передачи, низкие затраты на соединение на станцию являются еще одним решающим аргументом для CAN. В приложениях, где цена имеет решающее значение, очень важно, чтобы чипы CAN были доступны от различных производителей. Компактность других чипов контроллера также является важным аргументом, например, в области низковольтных распределительных устройств.

Как функционируют CAN-сети

Принципы обмена данными

Когда данные передаются по CAN, никакие станции не адресуются, но вместо этого содержание сообщения (например, скорость вращения или температура двигателя) обозначается идентификатором, который является уникальным во всей сети. Идентификатор определяет не только содержимое, но и приоритет сообщения. Это важно для распределения шины, когда несколько станций конкурируют за доступ к шине. Если ЦПУ данной станции желает отправить сообщение одной или нескольким станциям, он передает данные и их идентификаторы в назначенный CAN-чип (стостояние «Готово»). Это все, что должен сделать ЦП, чтобы инициировать обмен данными. Сообщение формируется и передается с помощью CAN-чипа. Как только CAN-чип получает выделение шины (состояние «Send Message»), все остальные станции в сети CAN становятся получателями этого сообщения (состояние «Receive Message»). Каждая станция в сети CAN, правильно приняв сообщение, выполняет приемный тест (тест получения), чтобы определить, относятся ли полученные данные к этой станции (состояние «Выбор»). Если данные имеют значение для соответствующей станции, они обрабатываются (состояние «Принято»), в противном случае они игнорируются. Высокая степень гибкости системы и конфигурации достигается благодаря схеме адресации, ориентированной на содержание. Очень просто добавлять станции в существующую сеть CAN без внесения каких-либо изменений в аппаратные или программные средства для существующих станций при условии, что новые станции являются чисто приемниками. Поскольку протокол передачи данных не требует физических адресов назначения для отдельных компонентов, он поддерживает концепцию модульной электроники, а также допускает множественный прием (широковещательный, многоадресный) и синхронизацию распределенных процессов: могут быть переданы измерения, необходимые в качестве информации несколькими контроллерами через сеть таким образом, что для каждого контроллера не требуется иметь свой собственный датчик.



1. Передача вещания и входная фильтрация узлами CAN на предмет того подходящие ли данные для того или иного узла

Неразрушающая побитовая проверка:

Для того, чтобы данные обрабатывались в режиме реального времени, они должны передаваться быстро. Это требует не только физического канала передачи данных со скоростью до 1 Мбит/с, но также требует быстрого распределения шины, когда несколько станций хотят отправлять сообщения одновременно.



2. Принцип неразрушающего побитового проверки(оценки, считывания)

В режиме реального времени безотлагательность (очередность) обмена сообщениями по сети может сильно различаться: быстро изменяющийся размер (например, нагрузка на двигатель) должен передаваться чаще и, следовательно, с меньшими задержками, чем другие измерения (например, температура двигателя), которые изменяются относительно медленно. Приоритет, при котором сообщение передается по сравнению с другим менее срочным сообщением, определяется идентификатором соответствующего сообщения. Приоритеты закладываются при проектировании системы в виде соответствующих двоичных значений и динамически не могут быть изменены. Идентификатор с наименьшим двоичным числом имеет самый высокий приоритет.

Конфликты доступа к шине разрешаются путем побитной проверки каждой из участвующих станций получаемых идентификаторов через наблюдение (считывание) уровня шины бит за битом. В соответствии с «проводным и» механизмом, посредством которого доминирующее состояние (логический 0) перезаписывает рецессивное состояние (логический 1), конкуренция за распределение шины теряется всеми этими станциями с рецессивной передачей и доминирующим наблюдением (ожиданием 0 для получения). Все «проигравшие» автоматически становятся получателями сообщения с наивысшим приоритетом и не передают повторную передачу до тех пор, пока шина не будет доступна снова.

Эффективность распределения шины:

Эффективность системы распределения шины определяется в основном возможным применением для этой системы последовательной шины. Чтобы судить о том, какие шинные системы подходят, для каких приложений литература включает метод классификации процедур распределения шины. Обычно мы различаем следующие классы:

Распределение по фиксированному графику. Распределение производится последовательно каждому участнику для максимальной продолжительности независимо от того, нужена ли этому участнику шина в данный момент или нет (примеры: маркерная ячейка или передача маркера).
Распределение шины на основе необходимости. Шина назначается одному участнику на основании невыполненных запросов на передачу, то есть система распределения учитывает только участников, желающих передать (примеры: CSMA, CSMA / CD, управляющий полет, циклическая или побитовая проверка). Для CAN распределение шины согласовано исключительно между сообщениями, ожидающими передачи. Это означает, что процедура, определенная CAN, классифицируется как распределение на основе необходимости.

Еще одним средством оценки эффективности систем проверки(оценки) шины является метод доступа к шине:

Неразрушающий доступ к шине. С помощью методов этого типа шина назначается одной и только одной станции либо немедленно, либо в течение определенного времени после одного доступа к шине (одной или несколькими станциями). Это гарантирует, что каждый доступ к шине одной или несколькими станциями приводит к однозначному распределению шины (примеры: : маркерная ячейка, передача маркера, циклическая обработка, побитовая проверка.
Разрушающее распределение шины. Одновременный доступ к шине более чем одной станцией приводит к прерыванию всех попыток передачи и, следовательно, успешное распределение шины отсутствует. Для распределения шины может потребоваться более одного доступа к шине, количество попыток до успешного распределения шины является чисто статистической величиной (примеры: CSMA / CD, Ethernet). Чтобы обрабатывать все запросы на передачу сети CAN, соблюдая ограничения времени ожидания при как можно более низкой скорости передачи данных, CAN-протокол должен реализовывать метод распределения шины, который гарантирует, что всегда имеется однозначное распределение шины, даже если есть одновременныё доступ к шине с разных станций.

Метод поразрядной проверки с использованием идентификатора сообщений, которые должны передаваться, однозначно разрешает любое столкновение между несколькими станциями, которые хотят передавать, и он делает это самое позднее в течение 13 (стандартного формата) или 33 (расширенного формата) битовых периодов для любого периода доступа к шине. В отличие от проверки по сообщениям, используемого методом CSMA / CD, этот неразрушающий метод разрешения конфликтов гарантирует, что пропускная способность шины не используется без передачи полезной информации.

Даже в ситуациях, когда шина перегружена, связь приоритета доступа к шине с содержимым сообщения оказывается полезным атрибутом системы по сравнению с существующими протоколами CSMA / CD или токенными(маркерными) протоколами: несмотря на недостаточную пропускную способность шины, все невыполненные запросы на передачу обрабатываются в порядке их важности для всей системы (как определено приоритетом сообщения).

Имеющаяся пропускная способность эффективно используется для передачи полезных данных, так как «пробелы» в распределении шины остаются очень маленькими. Падение всей системы передачи из-за перегрузки, что может произойти с протоколом CSMA / CD, невозможен при CAN. Таким образом, CAN позволяет реализовать быстрый, трафик-определенный доступ к шине, который является неразрушающим из-за побитовой проверке на основе используемого приоритета сообщения.

Неразрушающий доступ к шине можно разделить на:

Централизованное управление доступом к шине и
Децентрализованное управление доступом к шине

В зависимости от того, присутствуют ли механизмы управления в системе только один раз (централизованный) или более одного раза (децентрализованный).

Система связи с назначенной станцией (в частности, для централизованного управления доступом к шине) должна обеспечивать стратегию, которая вступает в силу в случае сбоя основной станции. Эта концепция имеет тот недостаток, что стратегия управления отказами является сложной и дорогостоящей для реализации, а также того, что захват центральной станции резервной станцией может занять очень много времени.

По этим причинам и для того, чтобы обойти проблему надежности ведущей станции (и, следовательно, всей системы связи), протокол CAN реализует децентрализованное управление шиной. Все основные механизмы связи, в том числе контроль доступа к шине, выполняются несколько раз в системе, потому что это единственный способ удовлетворить высоким требованиям к доступности системы связи.

В целом можно сказать, что CAN реализует трафик-определенную систему распределения шин, которая позволяет с помощью неразрушающего доступа к шине с децентрализованным управлением доступом обеспечить высокую полезную скорость передачи данных при минимально возможной скорости передачи данных шины в условиях занятости шины для всех станций. Эффективность процедуры проверки шины увеличивается за счет того, что шина используется только теми станциями, которые ожидают передачи запросов.

Эти запросы обрабатываются в порядке важности сообщений для системы в целом. Это особенно выгодно в случае перегрузки. Так как доступ к шине имеет приоритет на основе сообщений, можно гарантировать низкие индивидуальные задержки в системах реального времени.



3. Кадр сообщения для стандартного формата (CAN Specification 2.0A)

Форматы сообщений.

Протокол CAN поддерживает два формата фреймов (кадров) сообщения, единственное существенное отличие заключается в длине идентификатора (ID). В стандартном формате длина идентификатора равна 11 битам, а в расширенном формате длина равна 29 битам. Кадр сообщения для передачи по шине содержит семь основных полей.

Сообщение в стандартном формате начинается с стартового бита «начало кадра», за ним следует «поле проверки», которое содержит идентификатор и бит «RTR» (запрос удаленной передачи), который указывает, является ли это кадр с данными или кадр запроса без каких-либо байтов данных (кадр удаленного запроса).

«Поле управления» содержит бит расширения IDE (идентификатор расширения), который указывает либо стандартный формат, либо расширенный формат, бит зарезервирован для будущих расширений и - в последних 4 битах - счет байтов данных в поле данных.

«Поле данных» находится в диапазоне от 0 до 8 байтов в длину и сопровождается полем «CRC», которое используется в качестве проверки безопасности кадра для обнаружения битовых ошибок.

Поле «ACK» содержит слот ACK (1 бит) и разделитель ACK (один рецессивный бит). Бит в слоте ACK отправляется как рецессивный бит и перезаписывается в качестве доминантного бита теми приемниками, которые на этот момент времени приема данных приняли их корректно(правильно) (положительное подтверждение). Правильные сообщения подтверждаются приемниками независимо от результата приемочной проверки. Конец сообщения обозначается «конец кадра». «Перерыв» - это минимальное количество периодов битов, разделяющих последовательные сообщения. Если какой-либо станции нет следующего доступа к шине, шина остается бездействующей («bus idle»).

Обнаружение и сигнализация об ошибках.

В отличие от других систем шины CAN-протокол не использует сообщения подтверждения, а вместо этого сигнализирует о любых возникающих ошибках. Для обнаружения ошибок в протоколе CAN реализованы три механизма на уровне сообщения:

Циклическая проверка избыточности (CRC) CRC защищает информацию в кадре путем добавления избыточных проверочных битов на конце передачи. На конце приемника эти биты повторно вычисляются и проверяются на соответствие принятым битам. Если они не согласны, произошла ошибка CRC. Проверка кадра - этот механизм проверяет структуру передаваемого кадра, проверяя битовые поля на фиксированный формат и размер фрейма. Ошибки, обнаруженные при проверке кадров, обозначаются как «ошибки формата».
Ошибки ACK. Как уже упоминалось выше, полученные кадры подтверждаются всеми получателями посредством «положительного подтверждения». Если не получено подтверждение передатчиком сообщения (ошибка ACK), это может означать, что есть ошибка передачи, которая была обнаружена только получателями, что поле ACK было повреждено или что нет приемников.

Протокол CAN также реализует два механизма обнаружения ошибок на уровне битов.

Мониторинг. Способность передатчика обнаруживать ошибки основана на контроле сигналов шины: каждый узел, который передает, также наблюдает за уровнем шины и, таким образом, обнаруживает различия между отправленным битом и полученным битом. Это обеспечивает надежное обнаружение всех глобальных ошибок и ошибок, локальных для передатчика.
Набивка бит - кодирование отдельных битов проверяется на уровне битов. Битовое представление, используемое CAN, - это кодирование NRZ (non-return-to-zero), которое гарантирует максимальную эффективность в кодировании битов. Края синхронизации генерируются посредством заполнения битов, то есть после пяти последовательных равных битов отправитель вставляет в поток битов бит информации с дополнительным значением, которое удаляется приемниками. Проверка кода ограничивается проверкой соблюдения правила заполнения. Если одна или несколько ошибок обнаруживаются по меньшей мере одной станцией (любой станцией) с использованием указанных выше механизмов, текущая передача прерывается отправкой «флага ошибки». Это предотвращает прием другими станциями сообщений и, таким образом, обеспечивает согласованность данных на протяжении всей сети.

После прекращения передачи ошибочного сообщения отправитель автоматически повторяет попытку передачи (автоматический запрос повторения). Может снова возникнуть конкуренция за распределение шины. Как правило, повторная передача начинается в течение 23-битных периодов после обнаружения ошибки; В особых случаях время восстановления системы составляет 31 бит.

Однако эффективным и действенным описанный метод может быть в случае, когда неисправность станции может привести к прерыванию всех сообщений (в том числе и правильных), что блокирует систему шини, если не было предпринято никаких мер для самоконтроля. Таким образом, протокол CAN обеспечивает механизм для выделения спорадических ошибок из постоянных ошибок и локализации отказов станций (ограничение ошибок). Это делается путем статистической оценки ситуаций, связанных с ошибками станции, с целью распознавания собственных дефектов станции и возможного входа в режим работы, когда остальная часть сети CAN не подвергается негативному воздействию. Это может дойти до того, что станция выключится сама по себе, чтобы предотвратить ошибочное распознование некорректных сообщений среди тех, что были прерваны.

Надежность данных протокола CAN:

Внедрение в автомобилях систем, связанных с безопасностью, связано с высокими требованиями к надежности передачи данных. Цель часто формулируется так, чтобы не допускать возникновения опасных ситуаций для водителя в результате обмена данными в течение всего срока службы транспортного средства.

Эта цель достигается, если надежность данных достаточно высока или вероятность остаточной ошибки достаточно низкая. В контексте данных шинных систем под надежностью понимается способность идентифицировать данные, искаженные ошибками передачи. Остаточная вероятность ошибки является статистической мерой ухудшения надежности данных: она определяет вероятность искажения данных и того, что это повреждение будет оставаться незамеченным. Вероятность остаточной ошибки должна быть настолько мала, что в среднем никакие поврежденные данные не останутся незамеченными на протяжении всего срока службы системы.



4. Вероятность остаточной ошибки как функция вероятности ошибки бита

Вычисление вероятности остаточной ошибки требует классификации ошибок и того, что весь путь передачи описывается моделью. Если мы определим вероятность остаточной ошибки CAN как функцию вероятности ошибки в битах для длин сообщений от 80 до 90 бит, для системных конфигураций, например, пяти или десяти узлов и с частотой ошибок 1/1000 (ошибка в одном сообщении из каждой тысячи), то максимальная вероятность ошибки в битах составляет приблизительно от 0,02 – до порядка 10^-13. Исходя из этого, можно рассчитать максимальное количество необнаруживаемых ошибок для данной сети CAN.

Например, если сеть CAN работает со скоростью передачи данных 1 Мбит/с, при среднем использовании пропускной способности шины 50%, при общем сроке службы 4000 часов и при средней длине сообщения 80 бит, то общее число Передаваемых сообщений составляет 9x10^10. Статистическое число необнаруженных ошибок передачи в течение срока эксплуатации, таким образом, составляет менее чем порядка 10^-2. Или, иначе говоря, с продолжительностью работы восемь часов в день на 365 дней в году и частотой ошибок каждые 0,7 с, одна необнаруженная ошибка происходит раз в тысячу лет (статистическое среднее значение).

Сообщения CAN расширенного формата

Подкомитет SAE «Грузовые автомобили и автобусы» стандартизовал сигналы и сообщения, а также протоколы передачи данных для различных скоростей передачи данных. Стало очевидно, что стандартизацию такого рода легче реализовать, когда доступно более длинное поле идентификации.

Чтобы поддержать эти усилия, протокол CAN был расширен за счет введения 29-битного идентификатора. Этот идентификатор состоит из существующего 11-битного идентификатора (базового ID) и 18-битного расширения (ID-расширения). Таким образом, протокол CAN позволяет использовать два формата сообщений: StandardCAN (Версия 2.0A) и ExtendedCAN (Версия 2.0B). Поскольку два формата должны сосуществовать на одной шине, устанавливается, какое сообщение имеет более высокий приоритет на шине в случае коллизий доступа к шине с форматами сглаживания и одним и тем же базовым идентификатором: стандартное сообщение всегда имеет приоритет над сообщением в расширенном формате.

CAN-контроллеры, которые поддерживают сообщения в расширенном формате, могут также отправлять и получать сообщения в стандартном формате. Только сообщения в стандартном формате могут передаваться по всей сети, если в этой сети используются CAN-контроллеры, которые поддерживают только стандартный формат (Версия 2.0A). Сообщения в расширенном формате будут неправильно поняты. Однако есть CAN-контроллеры, которые поддерживают только стандартный формат, но распознают сообщения в расширенном формате и игнорируют их (версия 2.0B пассивная).

Различие между стандартным форматом и расширенным форматом осуществляется с использованием бита IDE (бит расширения идентификатора), который передается как доминирующий в случае кадра в стандартном формате. Для кадров в расширенном формате это рецессивно. Бит RTR передается доминантно или рецессивно в зависимости от того, передаются ли данные или запрашивается конкретное сообщение от станции. Вместо бита RTR в стандартном формате бит SRR (замена удаленного запроса) передается для кадров с расширенным идентификатором. Бит SRR всегда передается как рецессивный, чтобы гарантировать, что в случае проверки стандартный кадр всегда имел приоритетное распределение шины к расширенному кадру, когда оба сообщения имеют одинаковый базовый идентификатор.

В отличие от стандартного формата, в расширенном формате за битом IDE следует 18-битный ID-номер, бит RTR и зарезервированный бит (r1).

Все следующие поля идентичны стандарту. Соответствие между двумя форматами обеспечивается тем фактом, что CAN-контроллеры, которые поддерживают расширенный формат, могут также обмениваться данными в стандартном формате



5. Кадр сообщения для расширенного формата (CAN Specification 2.0A)

Реализации протокола CAN

Связь идентична для всех реализаций протокола CAN. Однако существуют различия в отношении того, в какой степени реализация осуществляет передачу сообщений от микроконтроллеров, которые следуют за ней в схеме. Связь идентична для всех реализаций протокола CAN. Однако существуют различия в отношении того, в как реализуется передача сообщений от микроконтроллеров, которые следуют за ней в схеме.

CAN-контроллер с промежуточным буфером

Контроллеры CAN с промежуточным буфером (ранее называемые чипами basicCAN) реализовали в качестве аппаратного обеспечения логику, необходимую для создания и проверки потока битов согласно протоколу. Однако администрирование наборов данных, которые должны быть отправлены и получены, в частности, фильтрация приёма осуществляется только CAN-контроллером.

Как правило, CAN-контроллеры с промежуточным буфером имеют два приема и один буфер передачи. 8-разрядные регистры кода и маски допускают ограниченную фильтрацию принятия (8 MSB идентификатора). Подходящий выбор этих значений регистра позволяет считывать группы идентификаторов или, в пограничных случаях, выбирать все идентификаторы. Если для дифференцирования сообщений требуется более 8 ID-MSB, тогда микроконтроллер, следующий за CAN-контроллером в схеме, должен дополнять фильтрацию принятия программным обеспечением.

Контроллеры CAN с промежуточным буфером могут перенести большую нагрузку на микроконтроллер с фильтрацией приёма, но они требуют только небольшой площади кристалла и поэтому могут быть изготовлены с меньшими затратами. В принципе, они могут принимать все объекты в сети CAN.

CAN-контроллер с хранилищем объектов.

Объекты CAN состоят в основном из трех компонентов: идентификатора, кода длины данных и фактических полезных данных.

CAN-контроллеры с хранилищем объектов (ранее называемые fullCAN) функционируют как CAN-контроллеры с промежуточными буферами, но также управляют определенными объектами. Там, где есть несколько одновременных запросов, они определяют, например, какой объект должен быть передан первым. Они также выполняют фильтрацию принятия для входящих объектов. Интерфейс к следующему микроконтроллеру соответствует ОЗУ. Данные, подлежащие передаче, записываются в соответствующую область ОЗУ, полученные данные считываются из области ОЗУ, соответственно. Микроконтроллер должен управлять только несколькими битами (например, запросом передачи).

Контроллеры CAN с хранилищем объектов рассчитаны на максимальную нагрузку от локального микроконтроллера. Однако эти CAN-контроллеры требуют большей площади кристалла и, следовательно, более дороги. В дополнение к этому, они могут администрировать только ограниченное количество чипов(микроконтроллеров).

На сегодняшний день доступны контроллеры CAN, которые сочетают в себе оба принципа реализации. Они имеют хранилище объектов, по крайней мере одно из которых спроектировано как промежуточный буфер. По этой причине больше нет смысла дифференцировать basicCAN и fullCAN.

CAN подчиненные контроллеры для функций ввода / вывода.

Также как CAN-контроллеры, которые поддерживают все функции CAN-протокола, есть CAN-чипы, для которых не требуется следующий за ним микроконтроллер. Эти CAN-чипы называются SLIO (последовательное соединение ввода / вывода). CAN-чипы являются подчиненными и должны управляться CAN-мастером(центральный, основной микроконтроллер в сети).

Физическое соединение CAN

Скорости передачи данных (до 1 Мбит / с) требуют достаточно крутого наклона импульса, который может быть реализован только с использованием силовых элементов. В принципе возможно несколько физических соединений. Тем не менее, пользователи и производители группы «CAN in Automation» рекомендуют использовать схемы драйверов в соответствии с ISO 11898.

Встроенные микросхемы драйверов в соответствии с ISO 11898 доступны от нескольких компаний (Bosch, Philips, Siliconix и Texas Instruments). Международная группа пользователей и производителей (CiA) также определяет несколько механических соединений (кабель и разъемы).



6. Physical CAN Connection according to ISO 11898

С уважением, перевод предоставлен коллективом мастерской

Валюта магазина рубли у.е.

Поиск

CAN шина. Часть 1.

1. Локальная сеть контроллеров (CAN)

Области применения.

Электронные распределители, Автомобили, Морские суда, Гидравлическое оборудование, Текстильная Промышленность, Перерабатывающая промышленность, Медицинское оборудование, Железная дорога, Строительная автоматизация, Авиационная радиоэлектроника, Бытовые приборы, Вооруженные силы, Обработка материалов, Сельское хозяйство, Телекоммуникация, Грузовики, Строительные Машины и Транспортные средства, Индустриальная автоматизация.

Общие сведения

Локальная сеть контроллеров CAN это стандарт серийной шины, разработанный в 80-х годах Robert Bosch GmbH, для соединения электронных блоков управления. CAN был специально разработан для устойчивой работы в насыщенной помехами окружающей среде с применением разносторонне сбалансированной линии, такой как RS-485. Соединение может быть более устойчивым к помехам при использовании витой пары. Первоначально создавалась для автомобильного назначения, но в настоящее время используется в разнообразных системах управления, в т.ч. индустриальных, работающих в насыщенной помехами окружающей среде.
Скорость обмена данными до 1Mbit/s возможна в сетях протяженностью не более 40м. Снижение скорости обмена позволяет увеличить протяженность сети, например - 250 Kbit/s при 250м.
CAN протокол связи стандартизирован согласно ISO 11898-1 (2003). Этот стандарт главным образом описывает слой обмена данными состоящий из подраздела логического контроля (LLC) и подраздела контроля доступа (MAC), и некоторых аспектов физического слоя ISO/OSI модели. Остальные слои протокола оставлены на усмотрение разработчика сети.

CAN сети и их разновидности

Существуют различные CAN сети. Например, в автомобилях CAN сети разделены на две категории, основанные на принципе передачи данных по сети.
Сети контроля систем комфорта и удобств, с большим количеством идентификаторов информации, которые передаются без соблюдения определенного порядка или частоты.
И сети контроля силовой установки, управляют информацией относящейся к двигателю и трансмиссии. Содержат меньшее количество информации, но информация передается организованно и быстро.

Общая характеристика

Интегрированная серийная коммуникационная шина для приложений работающих в режиме реального времени.
. Сеть работоспособна при скорости обмена данными до 1Mbit/s.
. Обладает превосходными возможностями обнаружения и проверки ошибок и неисправностей.
. Изначально CAN шина разработана для применения в автомобилях
. Используется в различных автоматических системах и системах управления.
. Международный стандарт: ISO 11898

Определение CAN

CAN - система на серийной шине приспособленная для организации сети интеллектуальных устройств, так же как датчиков и исполнительных устройств в системе или подсистеме.

Свойства CAN

CAN система на серийной шине с мультифункциональными возможностями, все CAN узлы способны передавать данные и некоторые CAN узлы могут запрашивать шину одновременно. Передатчик передает сообщение всем CAN узлам. Каждый узел, на основании полученного идентификатора, определяет, следует ли ему обрабатывать сообщение или нет. Идентификатор так же определяет приоритет, который имеет сообщение при доступе к шине. Простота определяет стоимость оборудования и затраты на обучение персонала. CAN микросхемы могут быть относительно просто запрограммированы. Вводные курсы, функциональные библиотеки, наборы для начинающих, различные интерфейсы, I/O модули и инструменты в широком разнообразии представлены в открытой продаже по доступным ценам. С 1989 года CAN микросхемы могут быть свободно и просто соединены с микроконтроллерами. В настоящее время в наличии около 50 CAN микросхем для микроконтроллеров более чем 15 производителей.
CAN применяется в большинстве Европейских легковых автомобилях, а так же решение производителей грузовиков и внедорожников в дальнейшем применять CAN, определили развитие более чем на 10 лет. В других областях применения, таких как, бытовая сфера и индустриальный сектор наблюдается рост продаж CAN оборудования, и будет продолжаться в будущем. К весне 1997 года уже насчитывалось более чем 50 миллионов установленных CAN узлов. Одна из выдающихся особенностей CAN протокола высокая надежность обмена данными. CAN контроллер регистрирует ошибки и обрабатывает их статистически для проведения соответствующих измерений, CAN узел, являющийся источником неисправности, в результате будет отстранен от соединения.
Каждое CAN сообщение может содержать от 0 до 8 бит пользовательской информации. Конечно, возможна передача более продолжительных данных с применением фрагментации. Максимальная специфицированная скорость обмена 1 Mbit/s. Это возможно при протяженности сети не более 40м. Для более длинной коммуникации скорость обмена должна быть снижена. Для дистанции до 500 м скорость 125Kbit/s, и для передачи более чем на 1 км допускается скорость 50 Kbit/s.

CAN приложения

CAN сети могут быть использованы как внедренные коммуникационные системы для микроконтроллеров так же как и открытые коммуникационные системы для интеллектуальных устройств. CAN система серийной шины, разработанная для применения в автомобилях, будет широко применяться в промышленных коммуникационных системах и во многом они будут сходны. В обоих случаях основными требованиями являются: низкая стоимость, способность функционировать в сложных условиях, продолжительная работоспособность и простота применения.
Некоторые пользователи, например, в области медицинской инженерии, предпочитают CAN потому, что необходимо соблюдать жесткие требования по безопасности. Подобные условия с повышенными требованиями по надежности и безопасности предъявляются и некоторым другим устройствам и оборудованию (т.е. роботы, подъемные и транспортные системы).

Лицензия CAN

CAN протокол разработан Robert Bosch GmbH и защищен патентами.

Основные стандарты CAN

Далее перечислены некоторые международные CAN стандарты
. CAN стандарты:
o ISO 11898-1 - CAN протокол
o ISO 11898-2 - CAN высокоскоростная физическая структура
o ISO 11898-3 - CAN низкоскоростная физическая структура совместимая с ошибками
o ISO 11898-4 - CAN запуск
o ISO 11898-5 - Высокоскоростное низковольтное устройство (в разработке).
o ISO 11519-2 - заменен на 11898-3.
. ISO 14230 - "Keyword Protocol 2000" - диагностический протокол использующий серийную линию, не CAN
. ISO 15765 - Диагностический протокол по CAN bus - Keyword 2000 на CAN bus.
. J1939 - Основной CAN протокол для грузовиков и автобусов определенный SAE
. ISO 11783 - J1939 и дополнение для сельхоз машин
. ISO 11992 - определяет интерфейс тягачей и прицепов
. NMEA 2000 - Протокол основанный на J1939 для судов, определен NMEA.

CAN протокол является стандартом ISO (ISO 11898) для последовательной передачи данных. Протокол разработан для приложений автомобильного применения. В настоящее время CAN системы широко распространены, и применяются в индустриальной автоматике, различных транспортных, специальных машинах и автомобилях

Преимущества CAN:

- Доступность для потребителя.
CAN протокол успешно применяется на протяжении более 15 лет, с 1986 года. Существует богатый выбор CAN продуктов и устройств в открытой продаже.

- Реализация протокола на аппаратном уровне
Протокол базируется на аппаратном уровне. Это дает возможность комбинировать способность распознавать и контролировать ошибки со способностью высокоскоростной передачи данных.

- Примитивная линия передачи
Линия передачи данных, в большинстве случаев, витая пара. Но связь по CAN протоколу так же может осуществляться по одному проводу. В различных случаях возможно применение наиболее подходящих каналов связи, оптического или радио канала.

- Превосходная способность обнаружения ошибок и сбоев и локализация неисправностей.
Способность обнаруживать ошибки и сбои является существенным преимуществом CAN протокола. Механизм определения ошибок построен на экстенсивном принципе, так же надежна и хорошо разработана система проверки и подтверждения ошибок и сбоев.
Система определения неисправностей и повторная передача данных выполняется автоматически на аппаратном уровне.

- Система обнаружения и проверки неисправностей
Неисправный источник в системе способен дезорганизовать всю систему, т.е. занять все каналы связи. CAN протокол имеет встроенную возможность которая предохраняет систему от источника неисправности. Источник ошибки отстраняется от приема и передачи данных по CAN шине.

2. CAN шина

Введение

CAN протокол является стандартом ISO (ISO 11898) для последовательной передачи данных. Протокол разработан для приложений автомобильного применения. В настоящее время CAN системы широко распространены и применяются в индустриальной автоматике, различных транспортных, специальных машинах и автомобилях.
CAN стандарт описывает параметры сигнала на физическом уровне и порядок передачи данных который определен двумя различными типами сообщений, правила арбитража доступа шины и метод определения и проверки неисправности.

CAN протокол

CAN определен стандартом ISO 11898-1 и включает следующие основные сведения.
. На физическом уровне, сигнал передается, используя витую пару.
. Для контроля к доступу шины применяются правила арбитража.
. Блоки данных небольшие по размеру (в большинстве случаев 8 байт) и защищены чексуммой.
. Блоки данных не имеют адресации, вместо того каждый блок содержит числовое значение, которое определяет приоритет передачи по шине, так же может нести идентификатор содержания блока данных.
. сложная схема обработки ошибок, которая приводит к повторной передаче данных, которые должным образом не получены.
. Эффективные действия по изоляции неисправностей и отключение источника неисправности от шины.

Протоколы высшего порядка (HLP)

CAN протокол определяет безопасную передачу небольших пакетов данных из пункта А в пункт Б используя общую линию коммуникации. Протокол не содержит средств контроля потока, адресацию, не предоставляет передачу сообщений более чем 8 бит, не осуществляет установку соединения и т.д. Перечисленные свойства определяются HLP(Higher layer protocol) или Протокол Высшего Порядка. Условия HLP получены и состоят из семи порядков OSI модели.

Назначение HLP
. Стандартизация процедур запуска и установка скорости передачи
. Распределение адресации устройств и разновидности сообщений.
. Определение порядка сообщений
. обеспечивает механизм определения неисправностей системного уровня

CAN продукты

Существуют два вида продуктов CAN , CAN микросхемы и средства обеспечения и развития CAN.
На высшем уровне две другие разновидности продуктов, CAN модули и CAN средства разработки. Широкое разнообразие подобных продуктов доступно в открытой продаже.

Патенты в области CAN

Патенты в отношении CAN приложений могут быть различных видов и направлений. Далее несколько видов:
. Синхронизация и реализация частоты передачи
. Передача больших блоков данных (CAN протокол использует фреймы длинной не более 8 бит)
Системы контроля распределения
CAN протокол продуктивная база для создания систем контроля распределения. Метод арбитража обеспечивает возможность каждого CAN устройства взаимодействовать с сообщениями относительно этого устройства.
Система контроля распределения может быть заявлена как система, в которой возможности процессора распределены среди устройств системы, или же наоборот, как система с центральным процессором и локальными I/O устройствами.
При разработке CAN сети могут быть применены различные совместимые аппаратные устройства, обладающие необходимыми свойствами и удовлетворяющие заданным или расчетным параметрам сети такие как, частота процессора, скорость передачи данных и т.д.

Действующие протоколы высшего порядка (HLP)

CAN протокол определяет безопасную передачу небольших пакетов данных из пункта А в пункт Б используя общую линию коммуникации. Протокол не содержит средств контроля потока, адресацию, не предоставляет передачу сообщений более чем 8 бит, не осуществляет установку соединения и т.д. Перечисленные свойства определяются HLP, higher layer protocol (Протоколами Высшего Порядка). Условия HLP получены и состоят из семи порядков

OSI модели (Open Systems Interconnect Model)
CanKingdom
CANopen/CAL
DeviceNet
J1939
OSEK
SDS

HLP обычно определяет
. Параметры запуска
. Распределение идентификатора сообщения среди различных устройств в системе
. Интерпретация содержимого блоков данных
. Статус взаимодействия в системе

Характеристика SDS, DeviceNet and CAN Kingdom.

И различия между CAN Kingdom and CANopen. В настоящее время насчитывается более 50 HLP. Применение HLP обязательно, в противном случае придется изобрести свой, собственный HLP.

CAnKingdom

CanKingdom поддерживается организацией CanKingdom International полная спецификация доступна на сайте организации.
CanKingdom обычно упоминается как CAN (Controller Area Network) протокол высшего порядка. В реальности наиболее упорядоченный протокол. Модули в системе соединены сетью, в которой один из модулей является главным (King). Например: для организации plug & play системы, главный модуль определяет какое устройство и при каких обстоятельствах может быть добавлено, разрешено добавление только специфицированных устройств. CanKingdom обеспечивает простую уникальную идентификацию устройств в системе, для этого используется стандарт идентификации EAN/UPC, индивидуальный идентификатор устройства определяется серийным номером устройства.
CanKingdom предоставляет разработчику все потенциальные возможности CAN.
Дизайнер не ограничен мультимастер протоколом CSMA/AMP и может создавать виртуальные системы управления шинами всевозможных разновидностей и топологии. Предоставляет возможность создания общих модулей без учета обстоятельств таких как, зависимость от HLP и свойств системы. Дизайнер может определить использование только специфических модулей, совмещая тем самым ценности открытой системы с преимуществами системы с ограниченным и безопасным доступом.

Потому как идентификатор в CAN сообщениях не только идентифицирует сообщение, но так же управляет доступом к шине, ключевое значение имеет нумерация сообщений. Другой важный фактор - это идентичность структуры данных в поле данных, как в передающем, так и принимающем модулях. Введением небольших, простых правил, указанные факторы полностью контролируемы и коммуникации оптимизированы для любой системы. Это выполняется во время короткой фазы установки при инициализации системы. Так же возможно включение устройств, не следующих CanKingdom правилам, в CanKingdom систему.
CanKingdom сопровождается соответствующей документацией по модулям и системам.

CAL and CANopen

CAL сокращенно от "CAN Application Layer" Порядок или слой CAN приложений, протокол поддерживается CiA. CAL разделен на несколько составных частей:
. CMS (CAN-based Message Specification) определяет протоколы передачи данных между CAN устройствами
. NMT (Network Management Service) определяет протоколы запуска и выключения, определения неисправностей, и т.д.
. DBT (Distributor Service) определяет протокол распределения идентификаторов различных устройств в системе
- CAL протокол отличный от OSI модели (Open Systems Interconnect (OSI) Model)
- CANopen является подразделом CAL, и скомпонован как набор профилей, которые не завершены окончательно.
- CAL/CANopen один из HLP действующих протоколов, поддерживаемых CiA.
- CAL и CANopen спецификации в полном объеме доступны и поддеживаются CiA

DeviceNet

Протокол развивается “Rockwell Automation nowadays”, определен организацией ODVA (Open DeviceNet Vendor Association). DeviceNet один из четырех протоколов, которые поддерживает CiA.

SAE J1939

J 1939 высокоскоростная сетевая коммуникация класса С разработанная для поддержки функций управления в режиме реальногго времени между контроллерами, которые физически расположены в различных местах автомобиля.
Jl708/Jl587 предыдущий, широко распространенный тип сети класса B с возможность обмена простой информацией, включая диагностические данные, между контроллерами. J1939 обладает всеми свойствами J1708/J1587.
J1939 использует CAN протокол с позволяет любому устройству передавать сообщение по сети в момент когда шина не загружена. Каждое сообщение включат в себя идентификатор, который определяет приоритет сообщения, информацию об отправителе данных, об информации, заключенной в сообщении. Конфликты избегаются благодаря механизму арбитража, который активизируется с передачей идентификатора (используется безопасная схема арбитража). Это позволяет сообщениям с наивысшим приоритетом передаваться с наименьшими задержками, по причине равного доступа к шине любым из устройств сети.
J1939 организован из нескольких частей основанных на (Open Systems Interconnect (OSI) Model). OSI модель определяет семь коммуникационных порядков (слоев), каждый представляет различные функции. В то время как есть документ J1939, ассигнованный каждому слою, не все они явно определены в пределах J1939. Другие слои выполняют вторичные функции, описанные в другом месте. Физический Слой описывает электрический интерфейс коммуникаций (витая экранированная пара проводов, который может также быть упомянут как шина). Слой Канала связи описывает протокол или управляет структурой сообщения, получая доступ к шине, и обнаруживая ошибки передачи. Слой приложения определяет специфические данные, содержащиеся в каждом сообщении, посылаемом по сети.
Полный комплект спецификации можно приобрести в SAE, ниже приведен перечень документов
J1939 дополняется следующими документами:
J1939 Практические рекомендации по Контролю серийной передачи и коммуникационная сеть транспортного средства
J1939/11 Физический порядок (слой) - 250k bits/s, экранированная витая пара
J1939/13 Диагностические разъемы
J1939/21 Данные слоя связи
J1939/31 Слой сети
J1939/71 Слой приложений
J1939/73 Диагностика
J1939/81 Управление сетью

OSEK/VDX

OSEK/VDX является совместным проектом в автомобильной индустрии. Создан как промышленный стандарт открытой оконечной архитектуры для распределенных контроллеров транспортных средств. Операционная система в режиме реального времени, интерфейсы программных средств и задачи управления сетью специфицированы совместно. OSEK" (Open systems and the corresponding interfaces for automotive electronics.) Открытые системы и информационные интерфейсы для автомобильной электроники. VDX “Whicule Distributed eXecutive" Распределенные исполнители транспортного средства.
Компании совместно участвующие в разработке: Opel, BMW, DaimlerChrysler, IIIT - University of Karlsruhe, PSA, Renault, Bosch, Siemens, Volkswagen.
Официальный сайт: www.osek-vdx.org

Smart Distributed System (SDS)

SDS система, на основе шины для интеллектуальных датчиков и исполнительных устройств, с упрощенным процессом установки, предоставляет широкие возможности управления вводом - выводом. Посредством одного четырехпроводного кабеля SDS система может быть оборудована до 126 приборами с индивидуальным адресом. Дополнительная информация и спецификация по SDS доступна на сайте разработчика Honeywell. SDS один из действующих четырех протоколов поддерживаемых CiA.

Сравнительная характеристика основных HLP протоколов
Общие сведения

DeviceNet, SDS и CAN Kingdom основаны на ISO 11898 CAN коммуникационном протоколе и функционируют согласно требований CAN спецификации. Каждый CAN модуль, следующий определенному протоколу может быть подключен к CAN шине следующей тому же протоколу. В любом случае при подключении модулей, которые действуют по различными протоколам, в большинстве случаев проблемы возникают по причине конфликта интерпретации сообщений на уровне приложений. CAN Kingdom отличается от SDS и DeviceNet основным принципом: CAN Kingdom организуется главным узлом коммуникации (“King”) при запуске, в отличии от SDS и DeviceNet. Такая организация позволяет упростить разработку комплекса систем реального времени и сокращает необходимое количество модулей координирующих спецификации, часто обозначаемые как профили.
SDS эффективен при подключении I/O устройств, различных выключателей и датчиков к PLC , фактически представляет собой соединение между основным модулем и удаленными I/O устройствами.
DeviceNet открытая система, в которой все модули имеют равные права по пользованию шиной, и порядок пользования шиной определяется небольшим набором инструкций. Разработчик модулей системы может передать полномочия по управлению коммуникацией другим модулям, например основному модулю в предопределенном режиме Главный/подчиненный, но DeviceNet не имеет возможности передать полномочия другим модулям. Характеристики SDS с использованием I/O устройств и DeviceNet в режиме Главный/подчиненный сходны.
Can Kingdom протокол ориентированный на системы продуцирования, соединения и контроля и не поддерживает профили для цифровых и аналоговых устройств. Основная особенность протокола заключается в том что модуль, подключенный к системе только ожидает инструкции от главного устройства. Все CAN приоритеты и идентификаторы принадлежат и предоставляются главным устройством. Во время запуска каждый модуль конфигурируется основным устройством, определяются приоритеты и идентификаторы объектов продуцирующих и потребляющих. Основное устройство является главным, но только в период конфигурирования системы. Главное устройство не может быть внедрено в период коммуникационной сессии между работающими приложениями различных модулей. Основное устройство может быть удалено после конфигурирования и проверки комплектности, при том каждый модуль запоминает полученные инструкции в памяти.


Входящий в МК STM32 CAN-контроллер является полнофункциональным CAN-узлом, отвечающий требованиям к активным и пассивным устройствам CAB 2.0A и 2.0B и поддерживающий передачу данных на скорости не более 1 Мбит/сек. CAN-контроллер оснащен также дополнительными возможностями для организации детерминистической передачи данных по специальному CAN-протоколу передачи в реальном времени TTCAN. После активизации функции TTCAN будет поддерживаться автоматическая повторная передача сообщений и автоматическая вставка в CAN-пакет двух дополнительных байт с зафиксированным моментом времени передачи сообщения. Все эти возможности необходимы в системах управления через CAN-интерфейс в масштабе реального времени.

Полное наименование CAN-контроллера - модуль bxCAN, где bx указывает на поддержку модулем дополнительных возможностей. Обычный модуль CAN использует один буфер приема и передачи, а у расширенного модуля CAN используется несколько буферов приема и передачи. Модуль bxCAN является гибридом двух архитектур модулей CAN. У него имеется три почтовых ящика для передаваемых сообщений и два почтовых ящика для принимаемых сообщений. Каждый из принимающих почтовых ящиков имеет буфер FIFO для помещения в него трех сообщений. Данная архитектура является компромиссной с точки зрения производительности передачи данных и занимаемого места в кристалле ИС.


Модуль CAN оснащен тремя почтовыми ящиками для передачи сообщений и имеет возможность автоматической вставки в сообщение текущего времени по протоколу TTCAN

Следующая важная функция CAN-контроллера - фильтрация получаемых сообщений. Поскольку CAN является широковещательной шиной, каждое переданное сообщение принимается всеми узлами шины. В CAN-шине любой разумной степени сложности передается достаточно большое число сообщений. Задачей каждого подключенного к CAN-узлу ЦПУ является реагирование на CAN-сообщения. Таким образом, чтобы избавить CAN-контроллер от проблемы приема в буфер нежелательных сообщений, необходима их фильтрация. У CAN-контроллера микроконтроллеров STM32 имеется 14 банков фильтров, которые можно использовать для блокировки всех CAN-сообщений, кроме избранных сообщений или групп сообщений.


14 фильтров сообщений поддерживают две конфигурации, которые можно использовать для фильтрации индивидуальных сообщений

Каждый банк фильтров состоит из двух 32-битных регистров и может работать в одном из четырех режимов. При использовании базового метода в каждый регистр банка фильтров записывается идентификатор сообщения. После поступления сообщения проверяется его идентификатор и, исходя из этого, принимается решение о приеме или отклонении сообщения. Данный режим поддерживает две конфигурации. В первой конфигурации регистры банков фильтров являются 3-битными и могут использоваться для фильтрации 11- и 29-битных полей идентификаторов сообщения, а также бит RTR и IDE в 16-битном режиме.

Во второй конфигурации, в первый 32-битный регистр записывается идентификатор сообщения, во второй - маска сообщения. Регистр маски маркирует биты регистра идентификатора, как "важный" или "неважный". Благодаря этому, появляется возможность принимать группу сообщений с помощью одного банка фильтров. Если принимающие фильтры пропускают сообщение, то вместе с ним принимающий буфер FIFO будет записан указатель на определивший совпадение фильтр. Это позволит прикладной программе ускорить идентификацию сообщения без необходимости считывания и дешифрации идентификатора пакета сообщения.

Все CAN-контроллеры поддерживают два режима работы: нормальный режим для приема и передачи пакетов сообщений и режим инициализации для задания параметров связи. Как уже говорилось, МК STM32 могут работать в экономичном режиме SLEEP. В этом режиме синхронизация модуля bxCAN отключена, однако доступ к регистрам почтовых ящиков остается возможным. Модуль bxCAN имеет возможность активизации работы при обнаружении активности на шине CAN. Его работу можно также реактивировать прикладной программой. Работая в нормальном режиме, поддерживаются два дополнительных подрежима. Первый подрежим - режим SILENT. В нём CAN-контроллер может принимать сообщения, но не может передавать и не генерирует бит ошибок в посылке и подтверждения сообщения. Данный режим рассчитан на CAN-шины с пассивным мониторингом. Второй подрежим - режим LOOPBACK. В этом режиме, передаваемые сообщения сразу же принимаются в приемный буфер. Он необходим для реализации диагностических функций и также полезен на фазе отладки кода программы. Оба рассмотренных режима можно комбинировать. Они идеальны для выполнения функций самотестирования при подключении к работающей шине.







2024 © gtavrl.ru.