Как построить лвс - локальную сеть малого предприятия. Принципы работы локальной сети Схемы построения локально вычислительных сетей


Локальная вычислительная сеть объединяет абонентов, находящихся на небольшом расстоянии друг от друга (в пределах 10-15 км). Обычно такие сети строятся в пределах одного предприятия или организации.

Информационные системы, построенные на базе локальных вычислительных сетей, обеспечивают решение следующих задач:

Хранение данных;

Обработка данных;

Организация доступа пользователей к данным;

Передача данных и результатов их обработки пользователям.

Компьютерные сети реализуют распределенную обработку данных. Здесь обработка данных распределяется между двумя объектами: клиентом и сервером. В процессе обработки данных клиент формирует запрос к серверу на выполнение сложных процедур. Сервер выполняет запрос, обеспечивает хранение данных общего пользования, организует доступ к этим данным и передает данные клиенту. Подобная модель вычислительной сети получила название архитектуры клиент - сервер.

По признаку распределения функций локальные компьютерные сети делятся на одноранговые и двухранговые (иерархические сети или сети с выделенным сервером).

В одноранговой сети компьютеры равноправны по отношению друг к другу. Каждый пользователь в сети решает сам, какие ресурсы своего компьютера он предоставит в общее пользование. Таким образом, компьютер выступает и в роли клиента, и в роли сервера. Одноранговое разделение ресурсов является вполне приемлемым для малых офисов с 5-10 пользователями, объединяя их в рабочую группу.

Двухранговая сеть организуется на основе сервера, на котором регистрируются пользователи сети.

Для современных компьютерных сетей типичной является смешанная сеть, объединяющая рабочие станции и серверы, причем часть рабочих станций образует одноранговые сети, а другая часть принадлежит двухранговым сетям.

Геометрическая схема соединения (конфигурация физического подключения) узлов сети называется топологией сети. Существует большое количество вариантов сетевых топологий, базовыми из которых являются шина, кольцо, звезда.



Шина . Канал связи, объединяющий узлы в сеть, образует ломаную линию - шину. Любой узел может принимать информацию в любое время, а передавать - только тогда, когда шина свободна. Данные (сигналы) передаются компьютером на шину. Каждый компьютер проверяет их, определяя, кому адресована информация, и принимает данные, если они посланы ему, либо игнорирует.

При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети. Если компьютеры расположены близко друг друга, то организация компьютерной сети с шинной топологией недорога и проста - необходимо просто проложить кабель от одного компьютера к другому. Затухание сигнала с увеличением расстояния ограничивает длину шины и, следовательно, число компьютеров, подключенных к ней.

Рабочие станции в любое время, без прерывания работы всей вычислительной сети, могут быть подключены к ней или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции.

Кольцо . Узлы объединены в сеть замкнутой кривой. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Передача данных осуществляется только в одном направлении. Каждый узел помимо всего прочего реализует функции ретранслятора. Он принимает и передает сообщения, а воспринимает только обращенные к нему. Используя кольцевую топологию, можно присоединить к сети большое количество узлов, решив проблемы помех и затухания сигнала средствами сетевой платы каждого узла. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять “в дорогу” по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

При кольцевой топологии сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо. Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию) .

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

Звезда . Узлы сети объединены с центром лучами. Вся информация передается через центр, что позволяет относительно просто выполнять поиск неисправностей и добавлять новые узлы без прерывания работы сети. Однако расходы на организацию каналов связи здесь обычно выше, чем у шины и кольца.

Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте RELCOM. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает.

Локальная вычислительная сеть - это понятие, знакомое многим не понаслышке. Практически каждое предприятие использует эту технологию, поэтому можно утверждать, что каждый человек так или иначе сталкивался с ней. Локальные сети существенно ускорили производственные процессы, тем самым дав резкий скачок дальнейшему их применению по всему земному шару. Все это позволяет прогнозировать дальнейший рост и развитие подобной системы передачи данных, вплоть до внедрения ЛВС на каждом, даже самом небольшом предприятии.

Понятие локальной сети

Локальная вычислительная сеть представляет собойнекое количество компьютеров, соединенных между собой специальным оборудованием, позволяющим осуществлять полноценный обмен информацией между ними. Важной особенностью этого вида передачи данных является относительно небольшая территория размещения узлов связи, то есть самих вычислительных машин.

Локальные сети не только существенно облегчают взаимодействие между пользователями, но и выполняют некоторые другие функции:

  • Упрощают работу с документацией. Сотрудники могут редактировать и просматривать файлы на своем рабочем месте. При этом надобность в коллективных собраниях и совещаниях отпадает, что экономит драгоценное время.
  • Позволяют работать над документами совместно с коллегами, когда каждый находится за своим компьютером.
  • Дают возможность доступа к приложениям, установленным на сервере, что позволяет экономить свободное пространство на установленном жестком диске.
  • Экономят пространство на жестком диске, позволяя сохранять документы на главном компьютере.

Виды сетей

Локальная вычислительная сеть может быть представлена двумя моделями: одноранговой сетью и иерархической. Различаются они способами взаимодействия узлов связи.

Одноранговая сеть основана на равноправии всех машин, а данные распределены между каждой из них. По сути, пользователь одного компьютера может получить доступ к ресурсам и информации другого. Эффективность работы одноранговой модели напрямую зависит от числа рабочих узлов, а уровень ее безопасности неудовлетворителен, что вкупе с достаточно сложным процессом управления делает такие сети не слишком надежными и удобными.

Иерархическая модель включает в себя один (или больше) главный сервер, где хранятся и обрабатываются все данные, и несколько узлов-клиентов. Этот тип сетей используется гораздо чаще первого, имея преимущество в быстродействии, надежности и безопасности. Однако скорость работы такой ЛВС во многом зависит от сервера, что при определенных условиях можно считать недостатком.

Составление технических требований

Проектирование локальной вычислительной сети представляет собой достаточно сложный процесс. Начинается он с разработки технического задания, которое следует тщательно продумать, так как недочеты в нем грозят последующими трудностями в построении сети и дополнительными финансовыми затратами. Первичное проектирование можно произвести с помощью специальных конфигураторов, которые позволят подобрать оптимальное сетевое оборудование. Особенно удобны такие программы тем, что можно исправлять различные значения и параметры непосредственно во время работы, а также составлять отчет по окончании процесса. Только после этих действий можно будет приступить к следующему этапу.

Эскизное проектирование

Этот этап заключается в сборе данных о предприятии, где планируется монтаж локально вычислительной сети, и анализе полученной информации. Определяется количество:

  • Пользователей.
  • Рабочих станций.
  • Серверных помещений.
  • Портов подключения.

Важным моментом является наличие данных о путях прокладки магистралей и планирование определенной топологии. В целом же необходимо придерживаться ряда требований, которые предъявляет стандарт IEEE 802.3. Однако, несмотря на эти правила, иногда может понадобиться произвести расчеты задержек распространения сигнала или же проконсультироваться у производителей сетевого оборудования.

Основные характеристики ЛВС

Выбирая способ размещения узлов связи, необходимо помнить об основных требованиях, предъявляемых к локальным сетям:

  • Производительности, которая сочетает в себе несколько понятий: пропускную способность, время реакции, задержку передачи.
  • Совместимости, т.е. способности подключить разное оборудование локальных вычислительных сетей и программное обеспечение.
  • Безопасности, надежности, т.е. возможности предотвращения несанкционированного доступа и полной защиты данных.
  • Масштабируемости - способности увеличения количества рабочих станций без ухудшения производительности сети.
  • Управляемости - возможности контроля главных элементов сети, профилактики и устранения проблем.
  • Прозрачности сети, заключающейся в представлении для пользователей единым вычислительным устройством.

Основные топологии локально-вычислительных сетей: достоинства и недостатки

Топология сети представляет собой физическое ее расположение, значительно влияя на основные характеристики. На современных предприятиях в основном используются три вида топологий: "Звезда", "Шина" и "Кольцо".

Топология «Звезда» является самой распространенной, имеет множество преимуществ перед остальными. Такой способ монтажа отличается высокой надежностью; если какой-либо компьютер вышел из строя (кроме сервера), на работу остальных это никак не повлияет.

Топология «Шина» представляет собой единый магистральный кабель с подключенными вычислительными машинами. Подобная организация локальной вычислительной сети экономит финансы, но не подходит для объединения большого количества компьютеров.

Топология «Кольцо» отличается низкой надежностью за счет особого расположения узлов - каждый из них соединен с двумя другими с помощью сетевых карт. Поломка одного компьютера приводит к остановке работы всей сети, поэтому такой вид топологии применяется все реже.

Рабочее проектирование сети

Локальная вычислительная сеть предприятия включает в себя также различные технологии, оборудование и кабели. Поэтому следующим этапом станет подбор всех этих элементов. Принятие решения в пользу того или иного программного либо аппаратного обеспечения определяется целью создания сети, количеством пользователей, перечнем используемых программ, размерами сети, а также ее месторасположением. В настоящее время чаще всего используются оптоволоконные магистрали, отличающиеся большой надежностью, быстродействием и доступностью.

О видах кабеля

Кабели используются в сетях для передачи сигналов между рабочими станциями, у каждого из них есть свои особенности, что необходимо учитывать при проектировании ЛВС.

  • Витая пара состоит из нескольких пар проводников, покрытых изоляцией и скрученных между собой. Невысокая цена и простота монтажа являются выгодными преимуществами, что делает такой кабель самым популярным для монтажа локальных сетей.
  • Коаксиальный кабель включает в себя два проводника, вставленных один в другой. Локальная вычислительная сеть с применением коаксиала уже не так распространена - ее заменила витая пара, однако она встречается в некоторых местах до сих пор.
  • Оптоволокно представляет собой стеклянную нить, способную переносить свет посредством его отражения от стенок. Кабель из этого материала передает данные на огромные расстояния и отличается высоким быстродействием по сравнению с витой парой и коаксиалом, однако стоит недешево.

Необходимое оборудование

Сетевое оборудование локальных вычислительных сетей включает множество элементов, наиболее часто используемыми среди которых являются:

  • Концентратор или хаб. Он объединяет некоторое количество устройств в один сегмент при помощи кабеля.
  • Коммутатор . Использует специальные процессоры для каждого порта, обрабатывающие пакеты обособленно от других портов, за счет чего обладают высокой производительностью.
  • Маршрутизатор . Это устройство, принимающее решения о рассылке пакетов на основе данных о таблицах маршрутизации и некоторых правил.
  • Модем . Широко применяется в системах связи, обеспечивая контакт с другими рабочими станциями посредством кабельной или телефонной сети.

Конечное сетевое оборудование

Аппаратное обеспечение локальной вычислительной сети в обязательном порядке включает серверную и клиентскую части.

Сервер - это мощный компьютер, имеющий высокую сетевую значимость. Функции его заключаются в хранении информации, баз данных, обслуживании пользователей и обработке программных кодов. Серверы находятся в специальных помещениях с регулируемой постоянной температурой воздуха - серверных, а корпус их оснащен дополнительной защитой от пыли, случайного выключения, а также мощной охлаждающей системой. Как правило, доступ к серверу имеют только системные администраторы либо руководители предприятия.

Рабочая станция представляет собой обычную вычислительную машину, подключенную к сети, то есть ею является любой компьютер, запрашивающий услуги у главного сервера. Для обеспечения связи на таких узлах используется модем и сетевая плата. Поскольку обычно рабочими станциями используются ресурсы сервера, клиентская часть оснащена слабыми планками памяти и жесткими дисками небольшого объема.

Программное обеспечение

Оборудование локальных вычислительных сетей не сможет полноценноосуществлять свои функции без подходящего программного обеспечения. К программной части относятся:

  • Сетевые операционные системы на серверах, составляющие основу любой сети. Именно ОС управляет доступом ко всем сетевым ресурсам, координирует маршрутизацию пакетов, разрешает конфликты устройств. В таких системах имеется встроенная поддержка протоколов TCP/IP, NetBEUI, IPX/SPX.
  • Автономные ОС, управляющие клиентской частью. Ими являются обычные операционные системы, к примеру, Windows XP, Windows 7.
  • Сетевые службы и приложения. Эти программные элементы позволяют производить различные действия: просмотр удаленной документации, печать на сетевом принтере, рассылка почтовых сообщений. Традиционные службы HTTP, POP-3, SMTP, FTP и Telnet являются основой этой категории и реализуются при помощи программного обеспечения.

Нюансы проектирования локальных сетей

Проектирование локальной вычислительной сети требует долгого и неспешного анализа, а также учета всех тонкостей. Важно предусмотреть возможность роста предприятия, что повлечет за собой и увеличение масштабов локальной сети. Составлять проект необходимо таким образом, чтобы ЛВС в любой момент была готова к подключению новой рабочей станции или другого устройства, а также модернизации любого ее узла и компонента.

Не менее важны и вопросы безопасности. Кабеля, применяемые при построении сети, должны быть надежно защищены от несанкционированного доступа, а магистрали размещены вдали от потенциально опасных мест, где они могут быть повреждены - нечаянно либо умышленно. Компоненты ЛВС, размещаемые за пределами помещения, в обязательном порядке следует заземлить и надежно закрепить.

Разработка локально вычислительной сети - это достаточно трудозатратный процесс, однако при правильном подходе и проявленной должной ответственности ЛВС будет работать надежно и стабильно, обеспечивая бесперебойную работу пользователей.

Московский Государственный Горный Университет

Кафедра Автоматизированных Систем Управления

Курсовой проект

по дисциплине «Сети ЭВМ и телекоммуникации»

на тему: «Проектирование локальной вычислительной сети»

Выполнил:

Ст. гр. АС-1-06

Юрьева Я.Г.

Проверил:

проф., д. т. н. Шек В.М.

Москва 2009

Введение

1 Задание на проектирование

2 Описание локально-вычислительной сети

3 Топология сети

4 Схема локальной сети

5 Эталонная модель OSI

6 Обоснование выбора технологии развертывания локальной сети

7 Сетевые протоколы

8 Аппаратное и программное обеспечение

9 Расчет характеристик сети

Список используемой литературы

Локальная вычислительная сеть (ЛВС) представляет собой коммуникационную систему, объединяющую компьютеры и периферийное оборудование на ограниченной территории, обычно не больше нескольких зданий или одного предприятия. В настоящее время ЛВС стала неотъемлемым атрибутом в любых вычислительных системах, имеющих более 1 компьютера.

Основные преимущества, обеспечиваемые локальной сетью – возможность совместной работы и быстрого обмена данными, централизованное хранение данных, разделяемый доступ к общим ресурсам, таким как принтеры, сеть Internet и другие.

Еще одной важнейшей функцией локальной сети является создание отказоустойчивых систем, продолжающих функционирование (пусть и не в полном объеме) при выходе из строя некоторых входящих в них элементов. В ЛВС отказоустойчивость обеспечивается путем избыточности, дублирования; а также гибкости работы отдельных входящих в сеть частей (компьютеров).

Конечной целью создания локальной сети на предприятии или в организации является повышение эффективности работы вычислительной системы в целом.

Построение надежной ЛВС, соответствующей предъявляемым требованиям по производительности и обладающей наименьшей стоимостью, требуется начинать с составления плана. В плане сеть разделяется на сегменты, подбирается подходящая топология и аппаратное обеспечение.

Топологию «шина» часто называют «линейной шиной» (linear bus). Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети.

В сети с топологией «шина» (рис.1.) компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов.

Рис.1. Топология «Шина»

Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причем в каждый момент времени только один компьютер может вести передачу.

Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть.

Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Так как кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

· характеристики аппаратного обеспечения компьютеров в сети;

· частота, с которой компьютеры передают данные;

· тип работающих сетевых приложений;

· тип сетевого кабеля;

· расстояние между компьютерами в сети.

Шина - пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

Отражение сигнала

Данные, или электрические сигналы, распространяются по всей сети - от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.

Терминатор

Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают терминаторы (terminators), поглощающие эти сигналы. Все концы сетевого кабеля должны быть к чему-нибудь подключены, например к компьютеру или к баррел-коннектору - для увеличения длины кабеля. К любому свободному - неподключенному - концу кабеля должен быть подсоединен терминатор, чтобы предотвратить отражение электрических сигналов.

Нарушение целостности сети

Разрыв сетевого кабеля происходит при его физическом разрыве или отсоединении одного из его концов. Возможна также ситуация, когда на одном или нескольких концах кабеля отсутствуют терминаторы, что приводит к отражению электрических сигналов в кабеле и прекращению функционирования сети. Сеть «падает».

Сами по себе компьютеры в сети остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.

Концепция топологии сети в виде звезды (рис.2.) пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

Рис.2. Топология «Звезда»

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает. Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети. Центральный узел управления – файловый сервер реализует оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

Достоинства

· Выход из строя одной рабочей станции не отражается на работе всей сети в целом;

· Хорошая масштабируемость сети;

· Лёгкий поиск неисправностей и обрывов в сети;

· Высокая производительность сети;

· Гибкие возможности администрирования.

Недостатки

· Выход из строя центрального концентратора обернётся неработоспособностью сети в целом;

· Для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;

· Конечное число рабочих станций, т.е. число рабочих станций ограничено количеством портов в центральном концентраторе.

При кольцевой топологии (рис.3.) сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Рис.3. Топология «Кольцо»

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географическое расположение рабочих станций далеко от формы кольца (например, в линию). Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять «в дорогу» по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции.

Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями. Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топологий.

Отдельные звезды включаются с помощью специальных коммутаторов (англ. Hub – концентратор), которые по-русски также иногда называют «хаб».

При создании глобальных (WAN) и региональных (MAN) сетей используется чаще всего Ячеистая топология MESH (рис.4.). Первоначально такая топология была создана для телефонных сетей. Каждый узел в такой сети выполняет функции приема, маршрутизации и передачи данных. Такая топология очень надежна (при выходе из строя любого сегмента существует маршрут, по которому данные могут быть переданы заданному узлу) и обладает высокой устойчивостью к перегрузкам сети (всегда может быть найден маршрут, наименее загруженный передачей данных).


Рис.4. Ячеистая топология.

При разработке сети была выбрана топология «звезда» ввиду простой реализации и высокой надежности (к каждому компьютеру идет отдельный кабель).

1) FastEthernet с использованием 2 коммутаторов.(рис. 5)

2 сегмент
1 сегмент

Рис. 6. Топология FastEthernet с использованием 1 маршрутизатора и 2 коммутаторов.

4Схема локальной сети

Ниже представлена схема расположения компьютеров и протяжки кабелей по этажам (рис.7,8).


Рис. 7. Схема расположения компьютеров и прокладки кабеля на 1 этаже.

Рис. 8. Схема расположения компьютеров и прокладки кабеля на 2 этаже.

Данная схема разработана с учетом характерных особенностей здания. Кабели будут расположены под искусственным напольным покрытием, в специально отведенных для них каналах. Протяжка кабеля на второй этаж будет осуществляться через телекоммуникационный шкаф, который расположен в подсобном помещении, которое используется как серверная комната, где располагаются сервер и маршрутизатор. Коммутаторы расположены в основных помещениях в тумбах.

Уровни взаимодействуют сверху вниз и снизу вверх посредством интерфейсов и могут еще взаимодействовать с таким же уровнем другой системы с помощью протоколов.

Протоколы, использующиеся на каждом уровне модели OSI, представлены в таблице 1.

Таблица 1.

Протоколы уровней модели OSI

Уровень OSI Протоколы
Прикладной HTTP, gopher, Telnet, DNS, SMTP, SNMP, CMIP, FTP, TFTP, SSH, IRC, AIM, NFS, NNTP, NTP, SNTP, XMPP, FTAM, APPC, X.400, X.500, AFP, LDAP, SIP, ITMS, ModbusTCP, BACnetIP, IMAP, POP3, SMB, MFTP, BitTorrent, eD2k, PROFIBUS
Представления HTTP, ASN.1, XML-RPC, TDI, XDR, SNMP, FTP, Telnet, SMTP, NCP, AFP
Сеансовый ASP, ADSP, DLC, Named Pipes, NBT, NetBIOS, NWLink, Printer Access Protocol, Zone Information Protocol, SSL, TLS, SOCKS
Транспортный TCP, UDP, NetBEUI, AEP, ATP, IL, NBP, RTMP, SMB, SPX, SCTP, DCCP, RTP, TFTP
Сетевой IP, IPv6, ICMP, IGMP, IPX, NWLink, NetBEUI, DDP, IPSec, ARP, RARP, DHCP, BootP, SKIP, RIP
Канальный STP, ARCnet, ATM, DTM, SLIP, SMDS, Ethernet, FDDI, Frame Relay, LocalTalk, Token ring, StarLan, L2F, L2TP, PPTP, PPP, PPPoE, PROFIBUS
Физический RS-232, RS-422, RS-423, RS-449, RS-485, ITU-T, xDSL, ISDN, T-carrier (T1, E1), модификациистандарта Ethernet: 10BASE-T, 10BASE2, 10BASE5, 100BASE-T (включает 100BASE-TX, 100BASE-T4, 100BASE-FX), 1000BASE-T, 1000BASE-TX, 1000BASE-SX

Следует понимать, что подавляющее большинство современных сетей в силу исторических причин лишь в общих чертах, приближённо, соответствуют эталонной модели ISO/OSI.

Реальный стек протоколов OSI, разработанный как часть проекта, был воспринят многими как слишком сложный и фактически нереализуемый. Он предполагал упразднение всех существующих протоколов и их замену новыми на всех уровнях стека. Это сильно затруднило реализацию стека и послужило причиной для отказа от него многих поставщиков и пользователей, сделавших значительные инвестиции в другие сетевые технологии. В дополнение, протоколы OSI разрабатывались комитетами, предлагавшими различные и иногда противоречивые характеристики, что привело к объявлению многих параметров и особенностей необязательными. Поскольку слишком многое было необязательно или предоставлено на выбор разработчика, реализации различных поставщиков просто не могли взаимодействовать, отвергая тем самым саму идею проекта OSI.

В результате попытка OSI договориться об общих стандартах сетевого взаимодействия была вытеснена стеком протоколов TCP/IP, используемым в Интернете, и его более простым, прагматичным подходом к компьютерным сетям. Подход Интернета состоял в создании простых протоколов с двумя независимыми реализациями, требующимися для того, чтобы протокол мог считаться стандартом. Это подтверждало практическую реализуемость стандарта. Например, определения стандартов электронной почты X.400 состоят из нескольких больших томов, а определение электронной почты Интернета (SMTP) - всего несколько десятков страниц в RFC 821. Всё же стоит заметить, что существуют многочисленные RFC, определяющие расширения SMTP. Поэтому на данный момент полная документация по SMTP и расширениям также занимает несколько больших книг.

Большинство протоколов и спецификаций стека OSI уже не используются, такие как электронная почта X.400. Лишь немногие выжили, часто в значительно упрощённом виде. Структура каталогов X.500 до сих пор используется, в основном, благодаря упрощению первоначального громоздкого протокола DAP, получившему название LDAP и статус стандарта Интернета.

Свёртывание проекта OSI в 1996 году нанесло серьёзный удар по репутации и легитимности участвовавших в нём организаций, особенно ISO. Наиболее крупным упущением создателей OSI был отказ увидеть и признать превосходство стека протоколов TCP/IP.

Для выбора технологии рассмотрим таблицу сравнений технологий FDDI, Ethernet и TokenRing (таблица 2).

Таблица 2. Характеристики технологий FDDI, Ethernet, TokenRing

Характеристика FDDI Ethernet Token Ring
Битовая скорость, Мбит/с 100 10 16
Топология Двойное кольцо деревьев Шина/звезда Звезда/кольцо
Среда передачиданных Оптоволокно, неэкранированная витая пара категории 5

Толстый коаксиал, тонкий коаксиал,

Экранированная или неэкранированная витая пара, оптоволокно
Максимальная длина сети (без мостов)

(100 км на кольцо)

2500 м 40000 м
Максимальноерасстояние между узлами 2 км (не более 11 дБ потерь между узлами) 2500 м 100 м
Максимальноеколичество узлов

(1000 соединений)

1024

260 для экранированной витой пары,

72 для неэкранированной витой пары

После анализа таблицы характеристик технологий FDDI, Ethernet, TokenRing, очевиден выбор технологии Ethernet (вернее ее модификации FastEthernet), которая учитывает все требованиям нашей локальной сети. Т.к технология TokenRing обеспечивает скорость передачи данных до 16 мбит\сек, то мы ее исключаем из дальнейшего рассмотрения, а из-за сложность реализации технологии FDDI, наиболее разумно будет использовать Ethernet.

7Сетевые протоколы

Семиуровневая модель OSI является теоретической, и содержит ряд недоработок. Реальные сетевые протоколы вынуждены отклоняться от неё, обеспечивая непредусмотренные возможности, поэтому привязка некоторых из них к уровням OSI является несколько условной.

Основная недоработка OSI - непродуманный транспортный уровень. На нём OSI позволяет обмен данными между приложениями (вводя понятие порта - идентификатора приложения), однако, возможность обмена простыми дейтаграммами в OSI не предусмотрена - транспортный уровень должен образовывать соединения, обеспечивать доставку, управлять потоком и т. п. Реальные же протоколы реализуют такую возможность.

Сетевые транспортные протоколы обеспечивают базовые функции, необходимые компьютерам для коммуникаций с сетью. Такие протоколы реализуют полные эффективные каналы коммуникаций между компьютерами.

Транспортный протокол можно рассматривать как зарегистрированную почтовую службу. Транспортный протокол гарантирует, что передаваемые данные доходят до заданного адресата, проверяя получаемую от него квитанцию. Он выполняет контроль и исправление ошибок без вмешательства более высокого уровня.

Основными сетевыми протоколами являются:

NWLink IPX/SPX/NetBIOS-совместимый транспортный протокол (NWLink) - это NDIS-совместимая 32-разрядная реализация протокола IPX/SPX фирмы Novell. Протокол NWLink поддерживает два интерфейса прикладного программирования (API): NetBIOS и Windows Sockets. Эти интерфейсы позволяют обеспечить связь компьютеров под управлением Windows между собой, а также с серверами NetWare.

Транспортный драйвер NWLink представляет собой реализацию протоколов низкого уровня NetWare, таких как IPX, SPX, RIPX (Routing Information Protocol over IPX) и NBIPX (NetBIOS over IPX). Протокол IPX управляет адресацией и маршрутизацией пакетов данных внутри сетей и между ними. Протокол SPX обеспечивает надежную доставку данных, поддерживая правильность последовательности их передачи и механизм подтверждений. Протокол NWLink обеспечивает совместимость с NetBIOS за счет уровня NetBIOS поверх протокола IPX.

IPX/SPX (от англ. Internetwork Packet eXchange/Sequenced Packet eXchange) - стек протоколов, используемый в сетях Novell NetWare. Протокол IPX обеспечивает сетевой уровень (доставку пакетов, аналог IP), SPX - транспортный и сеансовый уровень (аналог TCP).

Протокол IPX предназначен для передачи дейтограмм в системах, неориентированных на соединение (также как и IP или NETBIOS, разработанный IBM и эмулируемый в Novell), он обеспечивает связь между NetWare серверами и конечными станциями.

SPX (Sequence Packet eXchange) и его усовершенствованная модификация SPX II представляют собой транспортные протоколы 7-уровневой модели ISO. Это протокол гарантирует доставку пакета и использует технику скользящего окна (отдаленный аналог протокола TCP). В случае потери или ошибки пакет пересылается повторно, число повторений задается программно.

NetBEUI - это пpотокол, дополняющий спецификацию интеpфейса NetBIOS, используемую сетевой опеpационной системой. NetBEUI фоpмализует кадp тpанспоpтного уpовня, не стандаpтизованный в NetBIOS. Он не соответствует какому-то конкpетному уpовню модели OSI, а охватывает тpанспоpтный уpовень, сетевой уpовень и подуpовень LLC канального уpовня. NetBEUI взаимодействует напpямую с NDIS уpовня MAC. Таким обpазом это не маpшpутизиpуемый пpотокол.

Транспортной частью NetBEUI является NBF (NetBIOS Frame protocol). Сейчас вместо NetBEUI обычно применяется NBT (NetBIOS over TCP/IP).

Как правило NetBEUI используется в сетях где нет возможности использовать NetBIOS, например, в компьютерах с установленной MS-DOS.

Повторитель (англ. repeater) - предназначен для увеличения расстояния сетевого соединения путем повторения электрического сигнала "один в один". Бывают однопортовые повторители и многопортовые. В сетях на витой паре повторитель является самым дешевым средством объединения конечных узлов и других коммуникационных устройств в единый разделяемый сегмент. Повторители Ethernet могут иметь скорость 10 или 100 Мбит/с (FastEthernet), единую для всех портов. Для GigabitEthernet повторители не используются.

Мост (от англ. bridge - мост) является средством передачи кадров между двумя (и более) логически разнородными сегментами. По логике работы является частным случаем коммутатора. Скорость обычно 10 Мбит/с (для FastEthernet чаще используются коммутаторы).

Концентратор или хаб (от англ. hub - центр деятельности) - сетевое устройство, для объединения нескольких устройств Ethernet в общий сегмент. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна. Хаб является частным случаем концентратора

Концентратор работает на физическом уровне сетевой модели OSI, повторяет приходящий на один порт сигнал на все активные порты. В случае поступления сигнала на два и более порта одновременно возникает коллизия, и передаваемые кадры данных теряются. Таким образом, все подключенные к концентратору устройства находятся в одном домене коллизий. Концентраторы всегда работают в режиме полудуплекса, все подключенные устройства Ethernet разделяют между собой предоставляемую полосу доступа.

Многие модели хабов имеют простейшую защиту от излишнего количества коллизий, возникающих по причине одного из подключенных устройств. В этом случае они могут изолировать порт от общей среды передачи. По этой причине, сетевые сегменты, основанные на витой паре гораздо стабильнее в работе сегментов на коаксиальном кабеле, поскольку в первом случае каждое устройство может быть изолировано хабом от общей среды, а во втором случае несколько устройств подключаются при помощи одного сегмента кабеля, и, в случае большого количества коллизий, концентратор может изолировать лишь весь сегмент.

В последнее время концентраторы используются достаточно редко, вместо них получили распространение коммутаторы - устройства, работающие на канальном уровне модели OSI и повышающие производительность сети путём логического выделения каждого подключенного устройства в отдельный сегмент, домен коллизий.

Коммутатор или switch (от англ. - переключатель) Коммутатор (switch, switching hub) по принципу обработки кадров ничем не отличается от моста. Основное его отличие от моста состоит в том, что он является своего рода коммуникационным мультипроцессором, так как каждый его порт оснащен специализированным процессором, который обрабатывает кадры по алгоритму моста независимо от процессоров других портов. За счет этого общая производительность коммутатора обычно намного выше производительности традиционного моста, имеющего один процессорный блок. Можно сказать, что коммутаторы - это мосты нового поколения, которые обрабатывают кадры в параллельном режиме.

Это устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передает данные только непосредственно получателю. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.

Коммутатор работает на канальном уровне модели OSI, и потому в общем случае может только объединять узлы одной сети по их MAC-адресам. Для соединения нескольких сетей на основе сетевого уровня служат маршрутизаторы.

Коммутатор хранит в памяти специальную таблицу (ARP-таблицу), в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует пакеты данных, определяя MAC-адрес компьютера-отправителя, и заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит пакет, предназначенный для этого компьютера, этот пакет будет отправлен только на соответствующий порт. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется.

Коммутаторы подразделяются на управляемые и неуправляемые (наиболее простые). Более сложные коммутаторы позволяют управлять коммутацией на канальном и сетевом уровне модели OSI. Обычно их именуют соответственно, например Level 2 Switch или просто, сокращенно L2. Управление коммутатором может осуществляться посредством протокола Web-интерфейса, SNMP, RMON (протокол, разработанный Cisco) и т.п. Многие управляемые коммутаторы позволяют выполнять дополнительные функции: VLAN, QoS, агрегирование, зеркалирование. Сложные коммутаторы можно объединять в одно логическое устройство - стек, с целью увеличения числа портов (например, можно объединить 4 коммутатора с 24 портами и получить логический коммутатор с 96 портами).

Преобразователь интерфейсов или конвертер (англ. mediaconverter) позволяет осуществлять переходы от одной среды передачи к другой (например, от витой пары к оптоволокну) без логического преобразования сигналов. Благодаря усилению сигналов эти устройства могут позволять преодолевать ограничения на длину линий связи (если ограничения не связаны с задержкой распространения). Используются для связи оборудования с разнотипными портами.

Выпускается три типа конвертеров:

× Преобразователь RS-232 <–> RS-485;

× Преобразователь USB <–> RS-485;

× Преобразователь Ethernet <–> RS-485.

Преобразователь RS-232 <–> RS-485 преобразует физические параметры интерфейса RS-232 в сигналы интерфейса RS-485. Может работать в трех режимах приема-передачи. (В зависимости от установленного в конвертере программного обеспечения и состояния переключателей на плате конвертера).

Преобразователь USB <–> RS-485 - этот конвертер предназначен для организации интерфейса RS-485 на любом компьютере, имеющем интерфейс USB. Конвертер выполнен в виде отдельной платы, подключаемой к разъёму USB. Питание конвертера осуществляется непосредственно от порта USB. Драйвер конвертера позволяет создать для интерфейса USB виртуальный СОМ-порт и работать с ним как с обычным портом RS-485 (по аналогии с RS-232). Устройство обнаруживается сразу при подключении к порту USB.

Преобразователь Ethernet <–> RS-485 - этот конвертер предназначен для обеспечения возможности передачи сигналов интерфейса RS-485 по локальной сети. Конвертер имеет свой IP-адрес (устанавливаемый пользователем) и позволяет осуществить доступ к интерфейсу RS-485 с любого компьютера подключенного к локальной сети и установленным соответствующим программным обеспечением. Для работы с конвертером поставляются 2 программы: Port Redirector – поддержка интерфейса RS-485 (СОМ-порта) на уровне сетевой карты и конфигуратор Lantronix, позволяющий установить привязку конвертера к локальной сети пользователя, а также задать параметры интерфейса RS-485 (скорость передачи, количество бит данных и т.д.) Конвертер обеспечивает полностью прозрачную приемо-передачу данных в любом направлении.

Маршрутиза́тор или ро́утер (от англ. router) - сетевое устройство, используемое в компьютерных сетях передачи данных, которое, на основании информации о топологии сети (таблицы маршрутизации) и определённых правил, принимает решения о пересылке пакетов сетевого уровня модели OSI их получателю. Обычно применяется для связи нескольких сегментов сети.

Традиционно, маршрутизатор использует таблицу маршрутизации и адрес получателя, который находится в пакетах данных, для дальнейшей передачи данных. Выделяя эту информацию, он определяет по таблице маршрутизации путь, по которому следует передать данные и направляет пакет по этому маршруту. Если в таблице маршрутизации для адреса нет описанного маршрута, пакет отбрасывается.

Существуют другие способы определения маршрута пересылки пакетов, когда, например, используется адрес отправителя, используемые протоколы верхних уровней и другая информация, содержащаяся в заголовках пакетов сетевого уровня. Нередко маршрутизаторы могут осуществлять трансляцию адресов отправителя и получателя (англ. NAT, Network Address Translation), фильтрацию транзитного потока данных на основе определённых правил с целью ограничения доступа, шифрование/дешифрование передаваемых данных и т. д.

Маршрутизаторы помогают уменьшить загрузку сети, благодаря её разделению на домены коллизий и широковещательные домены, а также фильтрации пакетов. В основном их применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам, например для объединения локальных сетей Ethernet и WAN-соединений, использующих протоколы DSL, PPP, ATM, Frame relay и т. д. Нередко маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет, осуществляя функции трансляции адресов и межсетевого экрана.

В качестве маршрутизатора может выступать как специализированное устройство, так и PC компьютер, выполняющий функции простейшего роутера.

Моде́м (аббревиатура, составленная из слов мо дулятор-дем одулятор) - устройство, применяющееся в системах связи и выполняющее функцию модуляции и демодуляции. Частным случаем модема является широко применяемое периферийное устройство для компьютера, позволяющее ему связываться с другим компьютером, оборудованным модемом, через телефонную сеть (телефонный модем) или кабельную сеть (кабельный модем).

Конечное сетевое оборудование является источником и получателем информации, передаваемой по сети.

Компьютер (рабочая станция) , подключенный к сети, является самым универсальным узлом. Прикладное использование компьютера в сети определяется программным обеспечением и установленным дополнительным оборудованием. Для дальних коммуникаций используется модем, внутренний или внешний. С точки зрения сети, «лицом» компьютера является его сетевой адаптер. Тип сетевого адаптера должен соответствовать назначению компьютера и его сетевой активности.

Сервер является также компьютером, но с большими ресурсами. Это подразумевает его более высокую сетевую активность и значимость. Серверы желательно подключать к выделенному порту коммутатора. При установке двух и более сетевых интерфейсов (в том числе и модемного подключения) и соответствующего программного обеспечения сервер может играть роль маршрутизатора или моста. Серверы, как правило, должны иметь высокопроизводительную операционную систему.

В таблице 5 приведены параметры типовой рабочей станции и ее стоимость для разрабатываемой локальной сети.

Таблица 5.

Рабочая станция

Системный блок.GH301EA HP dc5750 uMT A64 X2-4200+(2.2GHz),1GB,160GB,ATI Radeon X300,DVD+/-RW,Vista Business
Компьютер Hewlett-Packard GH301EA серии dс 5750. Данный системный блок оборудован процессором AMD Athlon™ 64 X2 4200+ c частотой 2.2 ГГц, 1024 Mб оперативной памяти DDR2, жестким диском на 160 Гб, DVD-RW приводом и установленной ОС Windows Vista Business.
Цена:16 450.00 руб.
Монитор. TFT 19 “Asus V W1935
Цена:6 000,00 руб.
Устройства ввода
Мышь Genius GM-03003 172 руб.
Клавиатура 208 руб.
Общая стоимость 22 830 руб.

В Таблице 6 приведены параметры сервера.


Таблица 6.

Сервер

DESTEN Системныйблок DESTEN eStudio 1024QM
Процессор INTEL Core 2 Quad Q6600 2.4GHz 1066MHz 8Mb LGA775 OEM Материнскаяплата Gigabyte GA-P35-DS3R ATX Модульпамяти DDR-RAM2 1Gb 667Mhz Kingston KVR667D2N5/1G - 2 Жесткийдиск 250 Gb Hitachi Deskstar T7K500 HDP725025GLA380 7200RPM 8Mb SATA-2 - 2 Видеоадаптер 512MB Zotac PCI-E 8600GT DDR2 128 bit DVI (ZT-86TEG2P-FSR) Привод DVD RW NEC AD-7200S-0B SATA ЧерныйКорпус ZALMAN HD160XT BLACK.
Цена:50 882.00 руб.

Монитор. TFT 19 “Asus V W1935

Тип: ЖК Технология ЖК: TN Диагональ: 19" Формат экрана: 5:4 Макс. разрешение: 1280 x 1024 Входы: VGA Вертикальная развертка: 75 Гц Горизонтальная развертка: 81 КГц
Цена: 6 000,00 руб.
Устройства ввода
Мышь Genius GM-03003 172 руб.
Клавиатура Logitech Value Sea Grey (refresh) PS/2 208 руб.
Общая стоимость 57 262 руб.

В программное обеспечение сервера входят:

× Операционная система WindowsServer 2003 SP2+R2

× Пакетпрограмм ABBY FineReader Corporate Edition v8.0 (серверная лицензия)

× Программа для администрирования сети SymantecpcAnywhere 12 (сервер)

В программное обеспечение рабочей станции входят:

× Операционная система WindowsXPSP2

× Антивирусная программа NOD 32 AntiVirusSystem.

× Пакетпрограмм Microsoft Office 2003 (pro)

× Пакет программ ABBY FineReader Corporate Edition v8.0 (клиентская лицензия)

× Программа для администрирования сети Symantec pcAnywhere 12 (клиент)

× Пользовательские программы

Для реальных сетей важен такой показатель производительности, как показатель использования сети (networkutilization), который представляет собой долю в процентах от суммарной пропускной способности (не поделенной между отдельными абонентами). Он учитывает коллизии и другие факторы. Ни сервер, ни рабочие станции не содержат средств для определения показателя использования сети, для этого предназначены специальные, не всегда доступные из-за высокой стоимости аппаратно-программные средства типа анализаторов протоколов.

Считается, что для загруженных систем Ethernet и FastEthernet хорошим значением показателя использования сети является 30%. Это значение соответствует отсутствию длительных простоев в работе сети и обеспечивает достаточный запас в случае пикового повышения нагрузки. Однако если показатель использования сети значительное время составляет 80...90% и более, то это свидетельствует о практически полностью используемых (в данное время) ресурсах, но не оставляет резерва на будущее.

Для проведения расчетов и выводов следует рассчитать производительность в каждом сегменте сети.

Вычислим полезную нагрузку Pп:


где n – количество сегментов проектируемой сети.

P0 = 2*16 = 32Мбит/сек

Полная фактическая нагрузка Pф рассчитывается с учетом коллизий и величины задержек доступа к среде передачи данных:

, Мбит/с, (3)

где к – задержка доступа к среде передачи данных: для семейства технологий Ethernet – 0,4, для TokenRing – 0,6, для FDDI – 0,7.

Рф = 32*(1+0.4) = 44,8 Мбит/с

Т. к. фактическая нагрузка Pф > 10 Мбит/с, то, как и предполагалось ранее, данную сеть невозможно реализовать с помощью стандарта Ethernet, необходимо применить технологию FastEthernet (100 Мбит/с).

Т.к. данной в сети мы не используем концентраторы, то рассчитывать время двойного оборота сигнала не требуется.(Сигнал коллизий отсутствует)

В таблице 7 приведен итоговый расчет стоимости сети, построенной на 2 коммутаторах. (Вариант 1 ).

Таблица 6.

В Таблице 8 приведен итоговый расчет стоимости сети, построенной на 2 коммутаторах и 1 маршрутизаторе. (Вариант 2 ).

Таблица 8.

Наименование Цена за 1 ед. (руб.) Всего (руб.)
1 Вилки RJ-45 86 2 172
2 Кабель RJ-45 UTP, lev.5e 980м. 20 19 600
3 Коммутатор TrendNet N-Way Switch TEG S224 (10/100Mbps, 24 port, +2 1000Mbps Rack Mount) 2 3714 7 428
4 Маршрутизатор , Router D-Link DIR-100 1 1 250 1 250
5 Рабочая станция 40 22 830 913 200
6 Сервер Sunrise XD (Tower/RackMount) 1 57 262 57 262
Итого: 998912

В итоге получаем два варианта сети, которые не значительно отличаются по стоимости и отвечают стандартам построения сети. Первый вариант сети уступает второму варианту, в показателе надежности, даже несмотря на то, что проектирование сети по второму варианту незначительно дороже. Следовательно, наилучший вариант построения локальной сети будет вариант два – локальная сеть, построенная на 2 коммутаторах и маршрутизаторе.

Для надёжной работы и повышения производительности сети следует вносить изменения в структуру сети только с учётом требований стандарта.

Для защиты данных от вирусов необходимо установить антивирусные программы (например, NOD32 AntiVirusSystem), а для восстановления повреждённых или ошибочно удалённых данных следует использовать специальные утилиты (например, утилиты, входящие в состав пакета NortonSystemWorks).

Хотя сеть построена с запасом производительности, всё равно следует беречь сетевой трафик, поэтому с помощью программы для администрирования следить за целевым использованием внутрисетевого и интернет-трафика. Благотворно на производительности сети скажется использование служебных приложений NortonSystemWorks(таких как дефрагментация, чистка реестра, исправление текущих ошибок с помощью WinDoctor), а так же регулярной антивирусной проверки в ночное время. Также следует разделить во времени загрузку информации из другого сегмента т.е. постараться чтобы каждый сегмент обращался к другому в отведённое ему время. Установка программ, не имеющих отношения к непосредственной области деятельности компании, должна пресекаться администратором. При монтаже сети необходимо маркировать кабель, чтобы не столкнуться с трудностями при обслуживании сети.

Монтаж сети следует осуществлять через существующие каналы и короба.

Для надежной работы сети необходимо наличие сотрудника отвечающего за всю локальную сеть и занимающегося ее оптимизацией и повышением производительности.

Периферийное (принтеры, сканеры, проекторы) оборудование следует устанавливать уже после конкретного распределения обязанностей рабочих станций.

В целях профилактики следует периодически проверять целостность кабелей в секретном полу. При демонтаже оборудования следует аккуратно обращаться с оборудованием, для возможности его последующего использования.

Кроме того, необходимо ограничить доступ в серверную комнату и к тумбам с коммутаторами.

1. В.Г. Олифер, Н.А. Олифер – СПб. Питер 2004

2. http://ru.wikipedia.org/wiki/

3. В.М. Шек, Т.А. Кувашкина «Методические указания для курсового проектирования по дисциплине Сети ЭВМ и телекоммуникаций» - Москва, 2006

4. http://catalog.sunrise.ru/

5. В.М. Шек. Лекции по дисциплине «Сети ЭВМ и телекоммуникации», 2008г.

Крупные компании имеют в обороте большой объем данных разного характера:

  • текстовые файлы;
  • графические;
  • изображения;
  • таблицы;
  • схемы.

Для руководства важно, чтобы вся информация имела удобный формат, легко конвертировалась и передавалась на любом носителе в нужные руки. Но бумажные документы давно начали сменяться оцифрованными, так как компьютер может содержать множество данных, с которыми намного удобнее работать с помощью автоматизации процессов. Также этому способствует перемещение сведений, отчетов и договоров партнерам или проверяющим компаниям без длительных переездов.

Так появилась необходимость повсеместного снабжения отделов фирм электронно-вычислительными устройствами. Вместе с этим встал вопрос о соединении этих приборов в единый комплекс для защиты, сохранности и удобства перемещения файлов.

В этой статье мы расскажем, как облегчить проектирование локальной вычислительной (компьютерной) сети на предприятии.

Что такое ЛВС, ее функции

Это связующее подключение ряда компьютеров в одно замкнутое пространство. Часто такой метод используется в крупных компаниях, на производстве. Также можно самостоятельно создать небольшую связь из 2 – 3 приборов даже в домашних условиях. Чем больше включений в структуру, тем она становится сложнее.

Виды составления сетей

Бывает два типа подключения, они различаются по сложности и наличию руководящего, центрального звена:

  • Равноправные.
  • Многоуровневые.

Равнозначные, они же одноранговые, характеризуются схожестью по техническим характеристикам. На них идет одинаковое распределение функций – каждый пользователь может получить доступ во все общие документы, совершить одинаковые операции. Такая схема легка в управлении, для ее создания не требуется множественных усилий. Минусом является ее ограниченность – не более 10 членов может вступить в этот круг, в ином случае нарушается общая эффективность работы, скорость.

Серверное проектирование локальной сети компании более трудоемкое, однако, у такой системы выше уровень защиты информации, а также есть четкое распределение обязанностей внутри паутины. Самый лучший по техническим характеристикам (мощный, надежный, с большей оперативной памятью) компьютер назначается сервером. Это центр всей ЛВС, здесь хранятся все данные, с этой же точки можно открывать или прекращать доступ к документам другим пользователям.

Функции компьютерных сетей

Основные свойства, которые нужно учесть при составлении проекта:

  • Возможность подключения дополнительных устройств. Первоначально в сетке может находиться несколько машин, с расширением фирмы может понадобится дополнительное включение. При расчете мощности на это стоит обратить внимание, иначе понадобится делать перепланировку и докупать новые расходные материалы повышенной прочности.
  • Адаптация под разные технологии. Необходимо обеспечить гибкость системы и ее приспособленность к разным сетевым кабелям и разным ПО.
  • Наличие резервных линий. Во-первых, это относится к точкам выхода рядовых компьютеров. При сбое должна быть возможность подключить другой шнур. Во-вторых, нужно обеспечить бесперебойность работы сервера при многоуровневом подключении. Это можно сделать, обеспечив автоматический переход на второй концентратор.
  • Надежность. Оснащение бесперебойниками, резервами автономной энергии, чтобы минимизировать возможность перебоя связи.
  • Защита от посторонних влияний и взлома. Хранящиеся данных можно защищать не просто паролем, а целой связкой приспособлений: концентратор, коммутатор, маршрутизатор и сервер удаленного доступа.
  • Автоматизированное и ручное управление. Важно установить программу, которая будет анализировать состояние сетки в каждый момент времени и оповещать о неисправностях для быстрого их устранения. Пример такого софта – RMON. При этом можно использовать и личный мониторинг через интернет-серверы.

Составление технических требований для проектирования и расчета локальной сети (ЛВС) на предприятии

Из свойств выходят условия, которые нужно учитывать при составлении проекта. Весь процесс конструирования начинается с составления технического задания (ТЗ). Оно содержит:

  • Нормы по безопасности сведений.
  • Обеспечение всем подключенным компьютерам доступа к информации.
  • Параметры по производительности: время реакции от запроса пользователя до открытия нужной страницы, пропускная способность, то есть объем данных в работе и задержка передачи.
  • Условия надежности, то есть готовность длительной, даже постоянной работы без перебоев.
  • Замену комплектующий – расширение сетки, дополнительные включения или монтаж аппаратуры другой мощности.
  • Поддержку разных видов трафика: текст, графика, мультимедийный контент.
  • Обеспечение централизованного и дистанционного управления.
  • Интеграцию различных систем и программных пакетов.

Когда ТЗ составлено с соблюдением потребностей пользователей, выбирается вид включенности всех точек в одну сеть.

Основные топологии ЛВС

Это способы физического соединения устройств. Самые частотные представлены тремя фигурами:

  • шина;
  • кольцо;
  • звезда.

Шинная (линейная)

При сборке используется один ведущей кабель, от него уже отходят провода к пользовательским компьютерам. Основной шнур напрямую подключен к серверу,который хранит информацию. В нем же происходит отбор и фильтрация данных, предоставление или ограничение доступов.


Преимущества:

  • Отключение или проблемы с одним элементом не нарушают действия остальной сетки.
  • Проектирование локальной сети организации довольно простое.
  • Относительно низкая стоимость монтажа и расходных материалов.

Недостатки:

  • Сбой или повреждение несущего кабеля прекращает работу всей системы.
  • Небольшой участок может быть подключен таким образом.
  • Быстродействие может от этого страдать, тем более если связь проходит между более чем 10 устройствами.

«Кольцо» (кольцевая)

Все пользовательские компьютеры соединены последовательно – от одного прибора к другому. Так часто делают в случае одноранговых ЛВС. В целом эта технология применяется все реже.


Преимущества:

  • Нет расходов на концентратор, маршрутизатор и прочее сетевое оборудование.
  • Передавать информацию могут сразу несколько пользователей.

Недостатки:

  • Скорость передачи во всей сетке зависит от мощности самого медленного процессора.
  • При неполадках в кабеле или при отсутствии подключения любого элемента прекращается общая работа.
  • Настраивать такую систему достаточно сложно.
  • При подключении дополнительного рабочего места необходимо прерывать общую деятельность.

«Звезда»

Это параллельное включение устройств в сеть к общему источнику – серверу. Как цент чаще всего применяется хаб или концентратор. Все данные передаются через него. Таким способом может осуществляться работа не только компьютеров, но и принтеров, факсов и прочего оборудования. На современных предприятиях это самый частотный применяемый метод организации деятельности.


Преимущества:

  • Легко выполнить подключение еще одного места.
  • Производительность не зависит от быстродействия отдельных элементов, поэтому остается на стабильном высоком уровне.
  • Просто найти поломку.

Недостатки:

  • Неисправность центрального прибора прекращает деятельность всех пользователей.
  • Количество подключений обусловлено числом портов серверного устройства.
  • На сетку расходуется много кабеля.
  • Дороговизна оборудования.

Этапы программного проектирования ЛВС

Это многоступенчатый процесс, который требует компетентного участия многих специалистов, так как следует предварительно рассчитать необходимую пропускную способность кабелей, учесть конфигурацию помещений, установить и настроить технику.

Планирование помещений организации

Следует расположить кабинеты работников и начальства в соответствии с выбранной топологией. Если для вас подходит форма звезды, то стоит поместить основную технику в ту комнату, что является основной и располагается в центре. Это же может быть офис руководства. В случае шинного распределения, сервис может находиться в самом удаленном по коридору помещении.

Построение схемы локальной сети


Чертеж можно сделать в специализированных программах автоматизированного проектирования. Идеально подходят продукты компании «ЗВСОФТ» – в них содержатся все базовые элементы, которые потребуются при построении.

Сетка должна учитывать:

  • максимальное напряжение;
  • последовательность вхождений;
  • возможные перебои;
  • экономичность установки;
  • удобная подача электроэнергии.

Характеристики ЛВС необходимо подбирать в соответствии с планом помещений организации и используемым оборудованием.

Параметры компьютеров и сетевых устройств

При выборе и покупке элементов сетки важно учитывать следующие факторы:

  • Совместимость с разными программами и новыми технологиями.
  • Скорость передачи данных и быстродействие аппаратов.
  • Количество и качество кабелей зависит от выбранной топологии.
  • Метод управления обменов в сети.
  • Защищенность от помех и сбоев обмоткой проводов.
  • Стоимость и мощность сетевых адаптеров, трансиверов, репитеров, концентраторов, коммутаторов.

Принципы проектирования ЛВС с помощью компьютерных программ

При составлении проекта важно учесть большое количество нюансов. В этом поможет программное обеспечение от ZWSOFT. Компания занимается разработкой и продажей многофункциональных софтов для автоматизации работы инженеров-проектировщиков. Базовый САПР – является аналогом популярного, но дорогого пакта от Autodesk – AutoCAD, но превосходит его по легкости и удобству лицензирования, а также по более лояльной ценовой политике.


Преимущества программы:

  • Интуитивно понятный, удобный интерфейс в черном цвете.
  • Широкий выбор инструментов.
  • Работа в двухмерном и трехмерном пространстве.
  • 3D-визуализация.
  • Интеграция с файлами большинства популярных расширений.
  • Организация элементов ЛВС в виде блоков.
  • Подсчет длин кабельных линий.
  • Наглядное расположение элементов и узлов.
  • Одновременная работа с графикой и текстовыми данными.
  • Возможность установки дополнительных приложений.

Для ZWCAD – модуль, который расширяет функции базового САПРа в сфере проектирования мультимедийных схем. Все чертежи выполняются с автоматизированным расчетом кабелей локальной вычислительной сети и их маркировкой.

Преимущества:

  • автоматизация подбора коммутационных систем;
  • широкая библиотека элементов;
  • параллельное заполнение кабельного журнала;
  • автоматическое создание спецификаций;
  • добавление оборудования в библиотеку;
  • одновременная работа нескольких пользователей с базой данных;
  • схематичные отметки расположения устройств и предметов мебели.

Поможет сделать проект в объемном виде, создать его в 3D. Интеллектуальные инструменты позволяют быстро проложить трассы ЛВС до точек подключения, наглядно представить места прохождения кабелей, организовать пересечения линий, выполнить разрезы подключаемого оборудования и технологической мебели (в том числе в динамическом режиме). С помощью редактора компонентов можно создать библиотеку как шкафов, коммутационных аппаратов, кабелей, зажимов и проч., а также присвоить им характеристики, на основе которых в дальнейшем можно составить спецификации и калькуляции. Таким образом, функции этого софта помогут завершить генплан помещений организации с трассировкой всех линий ЛВС.

Создавайте проект локальной вычислительной сети в своем предприятии вместе с программами от «ЗВСОФТ».

Современные компьютерные технологии невозможно представить себе без объединения всевозможных устройств в виде стационарных терминалов, ноутбуков или даже мобильных девайсов в единую сеть. Такая организация позволяет не только быстро обмениваться данными между разными устройствами, но и использовать вычислительные возможности всех единиц техники, подключенной к одной сети, не говоря уже о возможности доступа к периферийным составляющим вроде принтеров, сканеров и т. д. Но по каким принципам производится такое объединение? Для их понимания необходимо рассмотреть локальной сети, часто называемую топологией, о чем дальше и пойдет речь. На сегодняшний день существует несколько основных классификаций и типов объединения любых устройств, поддерживающих сетевые технологии, в одну сеть. Конечно же, речь идет о тех девайсах, на которых установлены специальные проводные или беспроводные сетевые адаптеры и модули.

Схемы локальных компьютерных сетей: основная классификация

Прежде всего в рассмотрении любого типа организации компьютерных сетей необходимо отталкиваться исключительно от способа объединения компьютеров в единое целое. Тут можно выделить два основных направления, используемых при создании схемы локальной сети. Подключение по сети может быть либо проводным, либо беспроводным.

В первом случае используются специальные коаксиальные кабели или витые пары. Такая технология получила название Ethernet-соединения. Однако в случае использования в схеме локальной вычислительной сети коаксиальных кабелей их максимальная длина составляет порядка 185-500 м при скорости передачи данных не более 10 Мбит/с. Если применяются витые пары классов 7, 6 и 5е, их протяженность может составлять 30-100 м, а пропускная способность колеблется в пределах 10-1024 Мбит/с.

Беспроводная схема соединения компьютеров в локальной сети основана на передачи информации посредством радиосигнала, который распределяется между всеми подключаемыми устройствами, раздающими девайсами, в качестве которых могут выступать маршрутизаторы (роутеры и модемы), точки доступа (обычные компьютеры, ноутбуки, смартфоны, планшеты), коммутационные устройства (свитчи, хабы), повторители сигнала (репитеры) и т. д. При такой организации применяются оптоволоконные кабели, которые подключаются непосредственно к основному раздающему сигнал оборудованию. В свою очередь, расстояние, на которое можно передавать информацию, возрастает примерно до 2 км, а в радиочастотном диапазоне в основном применяются частоты 2,4 и 5,1 МГц (технология IEEE 802.11, больше известная как Wi-Fi).

Проводные сети принято считать более защищенными от внешнего воздействия, поскольку напрямую получить доступ ко всем терминалам получается не всегда. Беспроводные структуры в этом отношении проигрывают достаточно сильно, ведь при желании грамотный злоумышленник может запросто вычислить сетевой пароль, получить доступ к тому же маршрутизатору, а уже через него добраться до любого устройства, в данный момент использующего сигнал Wi-Fi. И очень часто в тех же государственных структурах или в оборонных предприятиях многих стран использовать беспроводное оборудование категорически запрещается.

Классификация сетей по типу соединения устройств между собой

Отдельно можно выделить полносвязную топологию схем соединения компьютеров в локальной сети. Такая организация подключения подразумевает только то, что абсолютно все терминалы, входящие в сеть, имеют связь друг с другом. И как уже понятно, такая структура является практически не защищенной в плане внешнего вторжения или при проникновении злоумышленников в сеть посредством специальных вирусных программ-червей или шпионских апплетов, которые изначально могли бы быть записаны на съемных носителях, которые те же неопытные сотрудники предприятий по незнанию могли подключить к своим компьютерам.

Именно поэтому чаще всего используются другие схемы соединения в локальной сети. Одной из таких можно назвать ячеистую структуру, из которой определенные начальные связи были удалены.

Общая схема соединения компьютеров в локальной сети: понятие основных типов топологии

Теперь кратко остановимся на проводных сетях. В них можно применять несколько наиболее распространенных типов построения схем локальных сетей. Самыми основными видами являются структуры типа «звезда», «шина» и «кольцо». Правда, наибольшее применение получил именно первый тип и его производные, но нередко можно встретить и смешанные типы сетей, где используются комбинации всех трех главных структур.

Топология «звезда»: плюсы и минусы

Схема локальной сети «звезда» считается наиболее распространенной и широко применяемой на практике, если речь идет об использовании основных типов подключения, так сказать, в чистом виде.

Суть такого объединения компьютеров в единое целое состоит в том, что все они подключаются непосредственно к центральному терминалу (серверу) и между собой не имеют никаких связей. Абсолютно вся передаваемая и принимаемая информация проходит непосредственно через центральный узел. И именно эта конфигурация считается наиболее безопасной. Почему? Да только потому, что внедрение тех же вирусов в сетевое окружение можно произвести либо с центрального терминала, либо добраться через него с другого компьютерного устройства. Однако весьма сомнительным выглядит тот момент, что в такой схеме локальной сети предприятия или государственного учреждения не будет обеспечен высокий уровень защиты центрального сервера. А внедрить шпионское ПО с отдельного терминала получится только при наличии физического доступа к нему. К тому же и со стороны центрального узла на каждый сетевой компьютер могут быть наложены достаточно серьезные ограничения, что особенно часто можно наблюдать при использовании сетевых операционных систем, когда на компьютерах отсутствуют даже жесткие диски, а все основные компоненты применяемой ОС загружаются непосредственно с главного терминала.

Но и тут есть свои недостатки. Прежде всего связано это с повышенными финансовыми затратами на прокладку кабелей, если основной сервер находится не в центре топологической структуры. Кроме того, скорость обработки информации напрямую зависит от вычислительных возможностей центрального узла, и если он выходит из строя, соответственно, на всех компьютерах, входящих в сетевую структуру, связи нарушаются.

Схема «шина»

Схема соединения в локальной сети по типу «шины» тоже является одной из распространенных, а ее организация основана на применении единого кабеля, через ответвления которого к сети подключаются все терминалы, в том числе и центральный сервер.

Главным недостатком такой структуры можно назвать высокую стоимость прокладки кабелей, особенно для тех случаев, когда терминалы находятся на достаточно большом удалении друг от друга. Зато при выходе из строя одного или нескольких компьютеров связи между всеми остальными компонентами в сетевом окружении не нарушаются. Кроме того, при использовании такой схемы локальной сети проходящая через основной канал очень часто дублируется на разных участках, что позволяет избежать ее повреждения или невозможности ее доставки в пункт назначения. А вот безопасность в такой структуре, увы, страдает довольно сильно, поскольку через центральный кабель вредоносные вирусные коды могут проникнуть на все остальные машины.

Структура «кольцо»

Кольцевую схему (топологию) в некотором смысле можно назвать морально устаревшей. На сегодняшний день она не используется практически ни в одной сетевой структуре (разве что только в смешанных типах). Связано это как раз с самими принципами объединения отдельных терминалов в одну организационную структуру.

Компьютеры друг с другом соединяются последовательно и только одним кабелем (грубо говоря, на входе и на выходе). Конечно, такая методика снижает материальные затраты, однако в случае выхода из строя хотя бы одной сетевой единицы нарушается целостность всей структуры. Если можно так сказать, на определенном участке, где присутствует поврежденный терминал, передача (прохождение) данных попросту стопорится. Соответственно, и при проникновении в сеть опасных компьютерных угроз они точно так же последовательно проходят от одного терминала к другому. Зато в случае присутствия на одном из участков надежной защиты вирус будет ликвидирован и дальше не пройдет.

Смешанные типы сетей

Как уже было сказано выше, основные типы схем локальных сетей в чистом виде практически не встречаются. Гораздо более надежными и в плане безопасности, и по затратам, и по удобству доступа выглядят смешанные типы, в которых могут присутствовать элементы основных видов сетевых схем.

Так, очень часто можно встретить сети с древовидной структурой, которую изначально можно назвать неким подобием «звезды», поскольку все ответвления идут из одной точки, называемой корнем. А вот организация ветвей в такой схеме подключения по локальной сети может содержать в себе и кольцевые, и шинные структуры, делясь на дополнительные ответвления, часто определяемые как подсети. Понятно, что такая организация является достаточно сложной, и при ее создании необходимо использовать дополнительные технические приспособления вроде сетевых коммутаторов или разветвителей. Но, как говорится, цель оправдывает средства, ведь благодаря такой сложной структуре важную и конфиденциальную информацию можно защитить очень надежно, изолировав ее в ветках подсетей и практически ограничив к ней доступ. То же самое касается и вывода из строя составляющих. При таком построении схем локальных сетей совершенно необязательно использовать только один центральный узел. Их может быть несколько, причем с совершенно разными уровнями защиты и доступа, что еще больше повышает степень общей безопасности.

Логистическая топология

Особо важно при организации сетевых структур обратить внимание на применяемые способы передачи данных. В компьютерной терминологии такие процессы принято называть логистической или логической топологией. При этом физические методы передачи информации в различных структурах могут весьма существенно отличаться от логических. Именно логистика, по сути своей, определяет маршруты приема/передачи. Очень часто можно наблюдать, что при построении сети в виде «звезды» обмен информацией осуществляется с использованием шинной топологии, когда сигнал может приниматься одновременно всеми устройствами. В кольцевых логических структурах можно встретить ситуации, когда сигналы или данные принимаются только теми терминалами, для которых они предназначены, несмотря даже на последовательное прохождение через все сопутствующие звенья.

Наиболее известные сети

Выше пока что рассматривалось исключительно построение схем локальных сетей на основе технологии Ethernet, которая в самом простом выражении использует адреса, протоколы и стеки TCP/IP. Но ведь в мире можно найти огромное количество сетевых структур, которые имеют отличные от приведенных принципы сетевой организации. Наиболее известными из всех (кроме Ethernet с использованием логической шинной топологии) являются Token Ring и Arcnet.

Сетевая структура Token Ring в свое время был разработана небезызвестной компанией IBM и базируется на логической схеме локальной сети «маркерное кольцо», что определяет доступ каждого терминала к передаваемой информации. В физическом отношении также применяется кольцевая структура, однако она имеет свои особенности. Для объединения компьютеров в единое целое имеется возможность использования либо витой пары, либо оптоволоконного кабеля, но скорость передачи данных составляет всего лишь 4-16 Мбит/с. Зато маркерная система по типу "звезды" позволяет передавать и получать данные только тем терминалам, которые имеют на это право (помечены маркером). Но основным недостатком такой организации является то, что в определенный момент такими правами может обладать только одна станция.

Не менее интересной выглядит и схема локальной сети Arcnet, созданная в 1977 году компанией Datapoint, которую многие специалисты называют самой недорогой, простой и очень гибкой структурой.

Для передачи информации и подключения компьютеров могут применяться коаксиальные или оптоволоконные кабели, но также не исключается возможность использования витой пары. Правда, в плане скорости приема/передачи эту структуру особо производительной назвать нельзя, поскольку в максимуме обмен пакетами может производиться на скорости подключения не более 2,5 Мбит/с. В качестве физического подключения используется схема «звезда», а в логическом - «маркерная шина». С правами на прием/передачу дело обстоит точно так же, как и в случае с Token Ring, за исключением того, что передаваемая от одной машины информация доступна абсолютно всем терминалам, входящим в сетевое окружение, а не какой-то одной машине.

Краткие сведения по настройке проводного и беспроводного подключения

Теперь кратко остановимся на некоторых важных моментах создания и применения любой из описанных схем локальной сети. Программы сторонних разработчиков при использовании любой из известных операционных систем для выполнения таких действий не нужны, поскольку основные инструменты предусмотрены в их стандартных наборах изначально. Однако в любом случае необходимо учитывать некоторые важные нюансы, касающиеся настройки IP-адресов, которые применяются для идентификации компьютеров в сетевых структурах. Разновидностей всего две - статические и динамические адреса. Первые, как уже понятно из названия, являются постоянными, а вторые могут изменяться при каждом новом соединении, но их значения находятся исключительно в одном диапазоне, устанавливаемом поставщиком услуг связи (провайдером).

В проводных корпоративных сетях для обеспечения высокой скорости обмена данными между сетевыми терминалами чаще всего используются статические адреса, назначаемые каждой машине, находящейся в сети, а при организации сети с беспроводным подключением обычно задействуются динамические адреса.

Для установки заданных параметров статического адреса в Windows-системах используются параметры протокола IPv4 (на постсоветском пространстве шестая версия еще особо широкого распространения не получила).

В свойствах протокола достаточно прописать IP-адрес для каждой машины, а параметры маски подсети и основного шлюза являются общими (если только не используется древовидная структура с множеством подсетей), что выглядит очень удобным с точки зрения быстрой настройки подключения. Несмотря на это, динамические адреса использовать тоже можно.

Они назначаются автоматически, для чего в настройках протокола TCP/IP имеется специальный пункт, в каждый определенный момент времени присваиваются сетевым машинам прямо с центрального сервера. Диапазон выделяемых адресов предоставляется провайдером. Но это абсолютно не значит, что адреса повторяются. Как известно, в мире не может быть двух одинаковых внешних IP, и данном случае речь идет либо о том, что они изменяются только внутри сети либо перебрасываются с одной машины на другую, когда какой-то внешний адрес оказывается свободным.

В случае с беспроводными сетями, когда для первичного подключения используются маршрутизаторы или точки доступа, раздающие (транслирующие или усиливающие) сигнал, настройка выглядит еще проще. Главное условие для такого типа подключения - установка автоматического получения внутреннего IP-адреса. Без этого соединение работать не будет. Единственный изменяемый параметр - адреса серверов DNS. Несмотря на начальную установку их автоматического получения, зачастую (особенно при снижении скорости подключения) рекомендуется выставлять такие параметры вручную, используя для этого, например, бесплатные комбинации, распространяемые компаниями Google, Yandex и т. д.

Наконец, даже при наличии только какого-то определенного набора внешних адресов, по которым в интернете идентифицируется любое компьютерное или мобильное устройство, изменять их тоже можно. Для этого предусмотрено множество специальных программ. Схема локальной сети может иметь любую из выше перечисленных вариаций. А суть применения таких инструментов, которые чаще всего представляют собой либо VPN-клиенты, либо удаленные прокси-серверы, состоит в том, чтобы изменить внешний IP, который, если кто не знает, имеет четкую географическую привязку, на незанятый адрес, по расположению находящийся в совершенно в другой локации (хоть на краю света). Применять такие утилиты можно непосредственно в браузерах (VPN-клиенты и расширения) либо производить изменение на уровне всей операционной системы (например, при помощи приложения SafeIP), когда некоторым приложениям, работающим в фоновом режиме, требуется получить доступ к заблокированным или недоступным для определенного региона интернет-ресурсам.

Эпилог

Если подводить итоги всему вышесказанному, можно сделать несколько основных выводов. Первое и самое главное касается того, что основные схемы подключения постоянно видоизменяются, и их в начальном варианте практически никогда не используют. Наиболее продвинутыми и самыми защищенными являются сложные древовидные структуры, в которых дополнительно может использоваться несколько подчиненных (зависимых) или независимых подсетей. Наконец, кто бы что ни говорил, на современном этапе развития компьютерных технологий проводные сети, даже несмотря на высокие финансовые затраты на их создание, все равно по уровню безопасности на голову выше, чем простейшие беспроводные. Но беспроводные сети имеют одно неоспоримое преимущество - позволяют объединять компьютеры и мобильные устройства, которые географически могут быть удалены друг от друга на очень большие расстояния.







2024 © gtavrl.ru.