Коммутаторы уровня доступа. Советы по выбору коммутатора или маршрутизатора Cisco


Раздел 2. Коммутаторы D-Link

Раздел 1. АТМ коммутаторы

В настоящее время технология АТМ лежит в основе глобальной высокоскоростной магистральной сети, предоставляющей услуги мультимедиа, то есть услуги, которые могут одновременно использовать несколько различных служб связи. Для работы такой сети требуется как транзитные узлы коммутации, так и узлы доступа, осуществляющие коммутацию на местном и региональном уровне. Естественно, что отдельные конкретные узлы коммутации могут объединять обе эти функции.

Широкое применение коммутаторов значительно повысило эффективность использования сети за счет равномерного распределения полосы пропускания между пользователями и приложениями.

Общий термин “коммутация ”применяется для четырех различных технологий:

– конфигурационной коммутации;

– коммутации кадров;

– коммутации ячеек;

– преобразования между кадрами и ячейками.

В основе конфигурационной коммутации лежит нахождение соответствия между конкретным портом коммутатора и определенным сегментом сети. Это соответствие может программно настраиваться при подключении или перемещении пользователей в сети.

При коммутации кадров используются кадров сетей Ethernet, Token Ring и т.д. Кадр при поступлении в сеть обрабатывается первым коммутатором на его пути. Под термином обработка понимается вся совокупность действий, производимых коммутатором для определения своего выходного порта, на который необходимо направить данный кадр. После обработки он передается далее по сети следующему коммутатору или непосредственно получателю. Из-за возможности возникновения выходных конфликтов в коммутаторе АТМ должна быть предусмотрена возможность буферизации пакетов АТМ. И виртуальные каналы (VC) и виртуальные пути (VP) определены как виртуальные соединения между смежными объектами маршрутизации в ATM сети. Логическая связь между двумя конечными пользователями состоит из ряда виртуальных связей, если коммутируются n коммутационных узлов виртуальный путь является связкой виртуальных каналов. Так как виртуальное соединение маркируется посредством иерархического ключа VPI/VCI (идентификатор виртуального пути / идентификатор виртуального канала) в заголовке ATM ячейки, коммутационная схема может использовать или коммутацию полного VC или только VP коммутацию. Первый случай соответствует полному ATM коммутатору, в то время как последний случай относится к упрощенному коммутационному узлу с уменьшенной обработкой, где минимальный объект коммутации – виртуальный путь. Поэтому коммутатор VP/VC повторно назначает новый VPI/VCI на каждую коммутируемую виртуальную ячейку, принимая во внимание, что только VPI повторно назначается в коммутаторе VP, как показано в примере на рисунке 1.1.



Рисунок 1.1 – Коммутатор виртуальных пакетов и виртуальных каналов

Общая модель коммутатора показана на рисунке 1.2. Эталон коммутатора включает N контроллеров входных портов (IPC), N контроллеров выходных портов (OPC) и взаимосвязанную сеть (IN). Очень важный блок, который не показан на рисунке процессор запроса, задача которого состоит в том, чтобы получить от IPC запросы на установление соединение и использовать соответствующий алгоритм, чтобы решить, принимать или отказывать в установлении соединения.

Пример коммутации в ATM представлен на рисунке 1.3.

Рисунок 1.3 – Пример коммутатора АТМ

Две ATM ячейки получены ATM узлом номер один и их идентификаторы VPI/VCI, А и C, занесены в контроллер входных портов с новыми VPI/VCI маркированными F и E; ячейки также адресованы выходным соединением c и f, соответственно.

Первый пакет поступает на нисходящий коммутатор J, где его ярлык исправляется на новый ярлык B и адресуется выходному соединению c. Последний пакет входит в нисходящий узел K, где он меняется на новый VPI/VCI и выдается адрес выхода коммутатора g. Даже если не показано на рисунке, использование техники самомаршрутизации для ячейки в пределах взаимосвязанной сети требует, чтобы IPC присвоила адрес выходного соединения, размещенный в виртуальном соединении каждой отдельной ячейки. Этот ярлык самомаршрутизации удаляется OPC перед тем, как ячейка покидает узел коммутации.

Идеальным можно считать коммутатор, который в состоянии без потерь и с минимально возможной задержкой направлять все поступающие пакеты по требуемым выходным каналам, сохраняя при этом порядок, в котором пакеты поступили на вход. Помимо основных операций по коммутации и буферизации от коммутатора может потребоваться выполнение еще двух функций. Первая из них - многоадресная передача, а вторая - возможность приоритетного обслуживания.

Все коммутаторы делятся на три типа:

– с коллективной памятью;

– с общей средой;

– с пространственным разделением.

1.1 Коммутаторы с коллективной памятью

Высокоскоростные коммутаторы ячеек с коллективной памятью можно считать наиболее естественным типом коммутаторов АТМ из-за большего сходства их принципов построения с традиционными коммутаторами пакетов, используемыми в вычислительных сетях.

Все входные и выходные контроллеры непосредственно соединены с общим запоминающим устройством, доступным для записи со всех входных контроллеров и чтения для всех выходных контроллеров. В рассматриваемом варианте архитектуры коммутатора АТМ должны быть удовлетворены два основных конструктивных требования.

Во-первых, время, необходимое процессору для того, чтобы определить, в какую очередь поставить поступивший пакет и выработать соответствующие управляющие сигналы, должно быть достаточно мало, чтобы процессор успевал справляться с потоком поступающих пакетов. Следовательно, в системе должен быть центральный контроллер, способный в течение каждого временного цикла обрабатывать последовательно N входных пакетов и выбирать N пакетов для дальнейшей передачи. Во-вторых, самое важное требование относится к коллективной памяти. Скорость записи/считывания должна быть достаточно велика, чтобы можно было обслужить одновременно весь входной и выходной трафик. Если число портов равно N , а скорость обмена через порт равна V , то скорость записи/считывания должна составлять 2NV . Так, для 32-х канального коммутатора с канальной скоростью 150 Мбит/с скорость запись/считывание должна составлять, по крайней мере, 9,6 Гбит/с.

Следует отметить, что в коммутаторе с коллективной памятью требуемый объем памяти определяется не только количеством портов N , поступающей нагрузкой, моделью трафика, но и способом коллективного использования памяти различными выходными очередями. Так, в одном случае память может быть разбита на N различных секций, каждая из которых предназначена для отдельной очереди (полное разбиение памяти). А в другом крайнем случае может быть организовано полностью совместное использование памяти, при котором все очереди могут формироваться в любой области памяти, и пакет будет потерян лишь тогда, когда заполнена вся память. Естественно, совместное использование ведет к минимизации объема памяти.

Примером коммутатора с общей памятью является коммутатор Prelude, разработанный во Франции в Национальном центре исследований в области связи (СМЕТ). Примечательно, что основные инженерно-конструкторские идеи, воплощенные в этом коммутаторе, актуальны и по сей день.

Принцип коммутатора с коллективной памятью показан на рисунке 1.4. Все входные и выходные контроллеры непосредственно соединены с общим запоминающим устройством, доступным для записи со всех входных контроллеров и чтения для всех выходных контроллеров.

IC – входной контроллер

OC – выходной контролер

Memory –память

Рисунок 1.4 – Коммутационный элемент с коллективной памятью

1.2 Коммутаторы с общей средой

В коммутаторах с общей средой все пакеты, поступающие по входным каналам, синхронно мультиплексируются в общую среду с высокой скоростью передачи, в качестве которой может выступать общая шина с разделением по времени или кольцо.

Если в качестве общей среды выступает параллельная шина, то ее полоса пропускания должна быть в N раз больше, чем скорость передачи по одному входному каналу. Каждый выходной канал присоединен к шине через интерфейс, состоящий из адресного фильтра (АФ) и выходного буфера, организованного по принципу "первым пришел - первым вышел" (FIFO).

Такой интерфейс в состоянии принять все пакеты, передаваемые по шине. В зависимости от значений идентификатора виртуального пути и виртуального канала, содержащихся в заголовке ячейки, адресный фильтр в каждом интерфейсе определяет, следует ли записывать ячейку в буфер данного выхода или нет. Таким образом, подобно коммутаторам с коллективной памятью коммутаторы с общей средой основаны на мультиплексировании всех поступающих пакетов в один поток и с последующим демультиплексированием общего потока на отдельные потоки по одному на каждый выход. Все пакеты проходят по единому пути - широковещательной шине с временным разделением, а демультиплексирование осуществляется адресными фильтрами в выходных интерфейсах.

Отличие коммутатора с общей средой от коммутатора с коллективной памятью заключается в том, что в данном типе архитектуре осуществляется полностью раздельное использование памяти выходными очередями, так что последние могут быть организованы по принципу "первым пришел - первым обслужен". Примером реализации такой архитектуры служит коммутатор Atom, разработанный фирмой NEC. Как и в случае архитектуры с коллективной памятью, реализация архитектуры с общей шиной во многом определяется тем, каким образом обеспечить высокую скорость передачи данных в шине и буферных устройствах, которые должны работать со средней скоростью NV , где V - скорость обмена через порт.

IC – входной контроллер

ОС – выходной контроллер

TDM – мультиплексирование с временным разделением.

Рисунок 1.5 – Шинная структура коммутатора

1.3 Коммутаторы АТМ с пространственным разделением

В противоположность вариантам архитектуры с коллективной памятью и общей средой, для которых характерно мультиплексирование входного трафика всех входных каналов в единый поток, в N раз превышающий полосу одного канала, в коммутаторе с пространственным разделением от входов к выходам устанавливается несколько соединений, скорость передачи по каждому из которых может быть равна скорости передачи по одному каналу.

Другой особенностью является то, что управление коммутатором не обязательно должно быть централизованным, а может быть распределенным.

В отличие от коммутаторов с коллективной памятью или с общей средой в структурах коммутаторов с пространственным разделением, для которых характерна возможность внутренних блокировок, выходная буферизация невозможна. Коммутаторы с пространственным разделением могут быть разбиты на три большие группы:

– матричные на рисунке 1.6;

– баньяновидные (древовидные);

– с N 2 раздельными соединениями.

1.4 Матричные коммутационные структуры

Внутренняя неблокируемая коммутационная структура может быть построена путем использования перекрестной прямоугольной матрицы для создания взаимосвязной сети на рисунке 1.2. Одновременно с этим существует возможность связки любой незанятой пары вход - выход. Так или иначе, перекрестная связь входа и выхода зависит от информации ячейки так же, как и от случайности возникновения «опасных соревнований» ячеек.

Внутри такой коммутационной структуры возможны различные расположения буферов:

– на входных контроллерах;

– на выходных контроллерах;

– в узлах матрицы.

IC – входной контроллер

ОС – выходной контроллер

Рисунок 1.2 – Матричная коммутационная структура

1.5 Входная буферизация в коммутаторах матричного типа

При входной буферизации отдельные буферы размещаются на входных контроллерах, показанно на рисунке 1.3. При использовании FIFD буферов (first-in first-out) конкуренция возникает в случае появления двух или более ячеек, находящихся в голове очереди, стремящихся одновременно к одному и тому же выходу . В этом случае происходит блокировка в голове очереди, т.е. пакеты, следующие за блокированным в голове очереди пакетом, также блокируется, даже если они предназначены для другого доступного выхода. Для преодоления этого недостатка, FIFD буфера могут быть замещены на запоминающее устройство с произвольной выборкой (RAM). Если первая ячейка заблокирована, то для передачи выбирается следующая, при условии, что ее порт назначения свободен.

Рисунок 1.3 – Коммутатор матричного типа с входными буферами

1.6 Выходная буферизация в коммутаторах матричного типа

Рисунок 1.4 показывает коммутационную структуру, состоящую из матрицы с выходными буферами . Только в случае, когда матрица функционирует на той же скорости, что и входящие линии, может возникнуть конфликт «опасных соревнований» (несколько ячеек одновременно стремятся попасть на один выход). Этот недостаток может быть сконцентрирован путем понижения прямого доступа буферного времени и увеличения скорости коммутатора матричного типа. Эти факторы могут привести к технологическим ограничениям в размере коммутационной структуры.

Коммутационный элемент с выходной буферизацией будет не блокируемым в том случае, когда фактор быстродействия коммутатора матричного типа равен b (т.е. b ячеек одновременно стремятся попасть на один выход) для b х b коммутационного элемента.

Рисунок 1.4 – Коммутатор матричного типа с выходной буферизацией

1.7 Буферизация в точках пересечения коммутатора матричного типа

Буферы могут быть также расположены в индивидуальных точках пересечения матрицы рисунок 1.5 . Такой коммутационный элемент получил название «Бабочка»(butterfly). Эта схема предупреждает столкновение ячеек, движущихся к одному выходу. Если более чем в одном буфере находятся ячейки, предназначенные для одного и того же выхода, то по той или иной системе должен быть выбран буфер, обслуживаемый первым.

В действительности, эта стратегия размещения буфера имеет недостаток: малого размера буфер требуется на каждой точке пересечения (узле), и разделить этот буфер не представляется возможным.

Рисунок 1.5 – Буферизация в точках пересечения коммутатора матричного типа

Поэтому невозможно достигнуть той же эффективности работы коммутационной структуры, какую обеспечивает коммутационная структура с выходной буферизацией.

1.8 Баньян сети

Отличительное свойство Баньян сети – это существование перехода от любого входа к любому выходу .



а) смешанные (Омега) сеть;

b) реверсная смешанная сеть;

c) особо чувствительная Баньян сеть;

d) обыкновенная сеть.

Рисунок 1.6 – Четыре вида сетей, принадлежащих к классу Баньян

Основное свойство этих сетей:

– они состоят из n=log2N и N/2 узлов на уровень;

– они имеют самонастраивающееся свойство – уникальный n-битный адрес назначения может использоваться для передачи ячейки от любого входа к любому выходу, по одному биту на каждый уровень;

– их регулярность и взаимосвязная схема очень привлекательна для применения в VLSI (VLSI - сверх большая степень интеграции).

Рисунок 1.7 показывает пример соединения в Баньян сети 8х8, где темные линии отражают передающие пути. С правой стороны адрес каждого выходного сигнала обозначен как ряд n-битов,b1…bn. Адрес ячейки сигнала закодирован в заголовке ячейки. На первом уровне проверяется бит b1, если это 0, ячейка будет выдвинута на высший, исходящий уровень; если это1,то ячейка отправляется на низший уровень. На следующем уровне проверяется бит b2, передача сигнала происходит аналогично.



Рисунок 1.7 – Баньян сеть 8х8

Внутренняя блокировка происходит в случае когда ячейка потеряна из-за конфликтных ситуаций на уровне сети. Рисунок 3.3 приводит пример внутренней блокировки внутри Баньян сети 8х8.

Тем не менее, Баньян сеть не будет иметь внутренних блокировок, если будут соблюдены следующие условия:

– нет свободного входного сигнала между любыми двумя активными входами;

– выходные адреса ячеек находятся либо в прямом, либо в обратном порядке.

Рисунок 1.8 – Блокировка в Баньян сети 8х8

Рассмотрим рисунок 1.9. Предположим, что Баньян сети предшествует сети которая накапливает ячейки и сортирует их, учитывая их выходные значения. Получившаяся в результате структура является неблокирующей сортирующей Баньян сетью.

а) неблокируемая Баньян сеть для входных сигналов;

b) сортирующая Баньян сеть.

Рисунок 1.9 – Неблокируемая и сортирующая Баньян сеть

1.9 Широкополосная баньян сеть. Обобщенный алгоритм самотрассировки

Широкополосная Баньян сеть – это сеть с коммутационными узлами, копирующими ячейки. Ячейка, прибывающая в каждый узел, может быть либо трассирована в один из выводных каналов, либо дублирована и отправлена по двум выводным каналам. Существует три варианта log23 = 1.585, а это значит, что минимальный объем информации заголовка равен двум бит а каждый узел.

На рисунке 1.10 представлен обобщенный алгоритм одно - битовой самотрассировки для ряда N-битных адресов с произвольным назначением. Когда ячейки прибывает в узел k-каскада, трассировка ячейки определяется k битами заголовков всех адресов назначения. Если все они равны нулю или единице, тогда ячейка отправляется в нулевой вывод или в единичный соответственно. В противном случае, копии ячеек отправляются в оба вывода, и соответственно копиям этих двух ячеек в заголовках изменяются адреса назначения: заголовки копий ячеек, отправленных в нулевой вывод или единичный, содержат адреса первоначальных заголовков в k бит, равных нулю или единице соответственно.

Рисунок 1.10– Обобщенный алгоритм самомаршрутизации

На рисунке 1.11 представлено дерево ввода-вывода, образуемое обобщающим алгоритмом самомаршрутизации.

Рисунок 1.11 – Дерево ввода-вывода, образуемое обобщающим алгоритмом самомаршутизации

При выполнении обобщенного алгоритма самотрассировки могут возникнуть трудности:

– заголовки ячеек содержат изменяющиеся адресные номера и

коммутационным узлам приходится считывать их все;

– при модификации заголовков ячеек учитывается вся совокупность

адресов, что усложняет работу коммутационных узлов;

– схема всех каналов выводов и вводов образует дерево в сети.

Деревья, образованные произвольным рядом входных ячеек, зависят от каналов. Таким образом, из-за нерегулярности ряда абсолютных адресов назначения в заголовках ячеек, система является блокирующей. Но в копирующей системе, где ячейки копируются, но не отправляются по абсолютным адресам, вместо абсолютных адресов могут использоваться фиктивные.

Фиктивные адреса каждой ячейки могут выстраиваться непрерывно, так чтобы весь ряд фиктивных адресов представлял интервал (адресный), состоящий из MIN и MAX текущих сумм. Адресный интервал входных ячеек можно сделать монотонным для обеспечения неблокирования в нижеописанной широкополосной Баньян сети.

Типичная сеть состоит из узлов (компьютеров), соединенных средой передачи данных (кабельной или беспроводной) и специализированным сетевым оборудованием, таким как маршрутизаторы, концентраторы или коммутаторы. Все эти компоненты сети, работая вместе, позволяют пользователям пересылать данные с одного компьютера на другой, возможно даже в другую часть света.

Коммутаторы – фундаментальная часть большинства современных сетей. Используя микросегментацию , они дают возможность одновременно посылать по сети информацию множеству пользователей. Микросегментация позволяет создать частные или выделенные сегменты – по одной рабочей станции на сегмент (к порту коммутатора подключается не сегмент, а только рабочая станция). Каждая рабочая станция, при этом, получает доступ сразу ко всей полосе пропускания, и ей не приходится конкурировать с другими станциями. Если оборудование работает в дуплексном режиме, то исключаются коллизии.

Существует множество различных типов коммутаторов и сетей. Коммутаторы, которые обеспечивают выделенное соединение для каждого узла внутренней сети компании, называются коммутаторами локальных сетей (LAN Switches) .

2.1 Преимущества использования коммутаторов LAN в сетях

Большинство первых локальных сетей использовало концентраторы для организации соединения между рабочими станциями сети. По мере роста сети, появлялись следующие проблемы:

· Маштабируемость сети (Scalability) – в сети, построенной на концентраторах, ограниченная совместно используемая полоса пропускания сильно затрудняет рост сети без потери производительности, а современные приложения требуют большую полосу пропускания, чем раньше.

· Задержка (Latency) – количество времени, которое требуется пакету, чтобы достичь пункта назначения. Т.к. каждый узел в сети, построенной на концентраторах должен ждать появления возможности передачи данных во избежании коллизий, то задержка может значительно увеличиться при наращивании узлов в сеть. Или, если кто-то передает по сети большой файл, все остальные узлы должны ждать окончания его передачи, чтобы получить возможность отправить свои данные.

· Сбой в сети (Network failure) – в обычной сети, одно устройство, подключенное к концентратору, может вызвать проблемы у остальных устройств, подключенных к нему из-за несоответствия скоростей работы (100 Мбит/с сетевой адаптер и 10 Мбит/с концентратор) или большого числа широковещательных сообщений (broadcast). Коммутаторы могут быть сконфигурированы для ограничения количества широковещательных пакетов.

· Коллизии (Collisions) – в полудуплексном Ethernet используется метод Carrier Sense Multiple Access /Collision Detection (CSMA/CD) для доступа к разделяемой среде передачи данных. При этом способе доступа, узел не сможет отправить свой пакет до тех пор, пока не убедиться, что среда передачи свободна. Если два узла обнаружили, что среда передачи свободна и начали передачу в одно и тоже время, возникает коллизия и пакет теряется. Часть сети Ethernet, все узлы которой распознают коллизию независимо от того, в какой части сети эта коллизия возникла, называется доменом коллизий (collision domain) . Сеть Ethernet, построенная на концентраторах, всегда образует один домен коллизий.

Простая замена концентраторов на коммутаторы позволяет значительно повысить эффективность локальных сетей, при этом не требуется замена кабельной проводки или сетевых адаптеров. Коммутаторы делят сеть на отдельные логические сегменты, изолируя трафик одного сегмента от трафика другого сегменты, создавая при этом небольшие по размеру домены коллизий.

Разделение большой сети на несколько автономных сегментов при помощи коммутаторов имеет несколько преимуществ. Поскольку перенаправлению подвергается только часть трафика, коммутаторы уменьшают трафик, принимаемый устройствами во всех сегментах сети. Коммутаторы могут выполнять функции межсетевого экрана (брандмауэра), не пропускающего некоторые потенциально опасные сетевые ошибки и обеспечивать обмен данными между большим количеством устройств. Коммутаторы увеличивают фактический размер сети, позволяя подключать к ней удаленные станции, которые иначе подключить нельзя. Для сетей Fast Ethernet или Gigabit Ethernet коммутатор является эффективным способом преодоления ограничения более “двух повторителей” при построении сети на концентраторах. Коммутаторы могут соединять локальные сети с различной полосой пропускания. Например, с помощью коммутатора можно соединить 10-мегабитную и 100-мегабитную локальные сети Ethernet. Некоторые коммутаторы поддерживают коммутацию без буферизации пакетов (cut-through switching), что уменьшает задержки в сети.

Еще одно существенное преимущество коммутаторов над концентраторами следующее. Все узлы, подключенные к концентратору, делят между собой всю полосу пропускания. Коммутаторы предоставляют каждому узлу (если он подключен непосредственно к порту коммутатора) отдельную полосу пропускания, чем уменьшают вероятность коллизий в сетевых сегментах.

Например, если к 10 Мбит/с концентратору подключено 10 устройств, то каждый узел получит пропускную способность равную 1 Мбит/с (10/N Мбит/с, где N-количество рабочих станций), даже если не все устройства будут передавать данные. Если вместо концентратора поставить коммутатор, то каждый узел сможет функционировать на скорости 10 Мбит/с.

До появления коммутаторов, сети Ethernet были полудуплекными , т.е. только одно устройство могло передавать данные в любой момент времени. Коммутация позволила сети Ethernet работать в полнодуплексном режиме.

Полнодуплексный режим – это дополнительная возможность одновременной двухсторонней передачи по линии связи "точка – точка" на МАС - подуровне. Функционально дуплексная передача намного проще полудуплексной, т.к. она не вызывает в среде передачи коллизий, не требует составления расписания повторных передач и добавления битов расширения в конец коротких кадров. В результате не только увеличивается время, доступное для передачи данных, но и удваивается полезная полоса пропускания канала, поскольку каждый канал обеспечивает полноскоростную одновременную двустороннюю передачу.

2.2 Технологии коммутации

Коммутаторы обычно работают на канальном уровне модели OSI. Они анализируют входящие кадры, принимают решение об их дальнейшей передаче на основе МАС - адресов, и передают кадры пунктам назначения. Основное преимущество коммутаторов – прозрачность для протоколов верхнего уровня. Т.к. коммутатор функционирует на 2-м уровне, ему нет необходимости анализировать информацию верхних уровней модели OSI.

Коммутация 2-го уровня – аппаратная. Передача кадра в коммутаторе обрабатывается специализированным контроллером, называемым Application-Specific Integrated Circuits (ASIC). Эта технология, разработанная для коммутаторов, позволяет поддерживать гигабитные скорости с небольшой задержкой.

Существую 2 основные причины использования коммутаторов 2-го уровня – сегментация сети и объединение рабочих групп. Высокая производительность коммутаторов позволяет разработчикам сетей значительно уменьшить количество узлов в физическом сегменте. Деление крупной сети на логические сегменты повышает производительность сети (за счет разгрузки сегментов), а также гибкость построения сети, увеличивая степень защиты данных, и облегчает управление сетью.

Несмотря на преимущества коммутации 2-го уровня, она все же имеет некоторые ограничения. Наличие коммутаторов в сети не препятствует распространению широковещательных кадров (broadcast) по всем сегментам сети, сохраняя ее прозрачность.

Таким образом, очевидно, что сети необходима функциональность 3-го уровня OSI модели.

Коммутация 3-го уровня – это аппаратная маршрутизация, где передача пакетов обрабатывается контроллерами ASICs. В отличие от коммутаторов 2-го уровня, коммутаторы 3-го уровня принимают решения на основе информации сетевого уровня, а не на основе МАС - адресов. Основная цель коммутации 3-го уровня – получить скорость коммутации 2-го уровня и масштабируемость маршрутизации. Обработку пакетов коммутатор 3-го уровня выполняет таким же образом, как и у маршрутизатор:

· на основе информации 3-го уровня (сетевых адресов) определяет путь к месту назначения пакета

· проверяет целостность заголовка 3-го уровня, вычисляя контрольную сумму

· проверяет время жизни пакета

· обрабатывает и отвечает на любую дополнительную информацию

· обновляет статистику в Информационной базе управления (Management Information Base -MIB)

· обеспечивает управление безопасностью (если необходимо)

· обеспечивает необходимое качество сервиса (QoS) для мультимедийных приложений чувствительных к задержкам передачи

Основное отличие между маршрутизаторами и коммутаторами 3-го уровня заключается в том, что в основе коммутации 3-го уровня лежит аппаратная реализация. В маршрутизаторах общего назначения коммутация пакетов обычно выполняется программным образом. Т.к. коммутаторы 3-го уровня обычно быстрее и дешевле маршрутизаторов, то их использование в локальных сетях очень привлекательно.

В качестве примеров коммутаторов 3-го уровня можно привести D-Link DES-3326S и DES-3326SR, DES-3350SR.

Коммутация 4-го уровня основывается на аппаратной маршрутизации сетевого уровня, которая отвечает за управляющую информацию 4-го уровня. Информация в заголовках пакета обычно включает адресацию сетевого уровня, тип протокола 3-го уровня, время жизни (TTL) и контрольную сумму. В пакете также содержится информация о протоколах верхних уровней, такая как тип протокола и номер порта.

Простое определение коммутации 4-го уровня – это возможность принимать решение о передаче пакета, основываясь не только на МАС или IP адресах, но и на параметрах 4-го уровня, таких как номер порта.

Маршрутизаторы умеют управлять трафиком, основываясь на информации транспортного уровня. Одним из методов является создание расширенных списков доступа (extended access lists).

Когда коммутаторы выполняют функции 4-го уровня, они читают поля TCP и UDP внутри заголовка и определяют, какой тип информации передается в этом пакете. Администратор сети может запрограммировать коммутатор обрабатывать трафик в соответствии с приоритетом приложений. Эта функция позволяет определить качество сервиса для конечных пользователей. Когда задано качество сервиса, коммутация 4-го уровня будет выделять, например, трафику видеоконференции, большую полосу пропускания по сравнению, например, с почтовым сообщением или пакетом FTP.

Коммутация 4-го уровня необходима, если выбранная политика предполагает разделение управления трафиком по приложениям или требуется учет количества трафика, вырабатываемого каждым приложением. Однако следует заметить, что коммутаторам, выполняющим коммутацию 4-го уровня, требуется возможность определять и хранить большое число таблиц коммутации, особенно если коммутатор используется внутри ядра корпоративной сети.

2.3 Продукты компании D-Link

Уровень доступа является ближайшим к пользователю уровнем и предоставляет ему доступ к ресурсам сети. Размещенные на этом уровне коммутаторы должны поддерживать подключение отдельных компьютеров к объединенной сети.

Коммутаторы уровня доступа D-Link представлены следующими моделями:

DES-1010G/1026G – неуправляемые коммутаторы, которые обеспечивают каналы связи скоростью 10/100Мбит/с и возможность подключения до 26 пользователей для сетей малых и средних офисов.

DGS-1005D/08D/16T/24T – неуправляемые коммутаторы, которые обеспечивают гигабитные каналы связи для высокоскоростного подключения серверов и рабочих станций.

DES-12xxR и DGS-12xxT – настраиваемые коммутаторы, которые обеспечивают коммутируемые каналы 10/100 Мбит/с и 10/100/1000Мбит/с и поддерживающие до 24 пользователей и 2 порта Gigabit Ethernet для серверов.

DES-3226/3226L/3226S/DHS-3226 – управляемые коммутаторы, предоставляющие возможность подключения до 144 пользователей с помощью 10/100 Мбит/с каналов связи и 6 серверов через порты Gigabit Ethernet.

Сейчас, во время всевозможных гаджетов и электронных девайсов, которые переполняют среду обитания обычного человека, актуальна проблема – как эти все интеллектуальные устройства увязать между собой. Почти в любой квартире есть телевизор, компьютер/ноутбук, принтер, сканер, звуковая система, и хочется как-то скоординировать их, а не перекидывать бесконечное количество информации флешками, и при этом не запутаться в бесконечных километрах проводов. Та же самая ситуация касается офисов – с немалым количеством компьютеров и МФУ, или других систем, где нужно увязать разных представителей электронного сообщества в одну систему. Вот тут и возникает идея построения локальной сети. А основа грамотно организованной и структурированной локальной сети – сетевой коммутатор.



ОПРЕДЕЛЕНИЕ

Коммутатор , или свитч - прибор, объединяющий несколько интеллектуальных устройств в локальную сеть для обмена данными. При получении информации на один из портов, передает ее далее на другой порт, на основании таблицы коммутации или таблицы MAC-адресов . При этом процесс заполнения таблицы идет не пользователем, а самим коммутатором, в процессе работы – при первом сеансе передачи данных таблица пуста, и изначально коммутатор ретранслирует пришедшую информацию на все свои порты. Но в процессе работы он запоминает пути следования информации, записывает их к себе в таблицу и при последующих сеансах уже отправляет информацию по определенному адресу. Размер таблицы может включать от 1000 до 16384 адресов.

Для построения локальных сетей используются и другие устройства – концентраторы (хабы) и маршрутизаторы (роутеры). Сразу, во избежание путаницы, стоит указать на различия между ними и коммутатором.

Концентратор (он же хаб) – является прародителем коммутатора. Время использования хабов фактически ушло в прошлое, из-за следующего неудобства: если информация приходила на один из портов хаба, он тут же ретранслировал ее на другие, «забивая» сеть лишним трафиком. Но изредка они еще встречаются, впрочем, среди современного сетевого оборудования выглядят, как самоходные кареты начала 20-го века среди электрокаров современности.

Маршрутизаторы – устройства, с которыми часто путают коммутаторы из-за похожего внешнего вида, но у них более обширный спектр возможностей работы, и ввиду с этим более высокая стоимость. Это своего рода сетевые микрокомпьютеры, с помощью которых можно полноценно настроить сеть, прописав все адреса устройств в ней и наложив логические алгоритмы работы – к примеру, защиту сети.

Коммутаторы и хабы чаще всего используются для организации локальных сетей, маршрутизаторы – для организации сети, связанной с выходом в интернет. Однако следует заметить, что сейчас постепенно размываются границы между коммутаторами и маршрутизаторами – выпускаются коммутаторы, которые требуют настройки и работают с прописываемыми адресами устройств локальной сети. Они могут выполнять функции маршрутизаторов, но это, как правило, дорогостоящие устройства не для домашнего использования.
Самый простой и дешевый вариант конфигурации домашней локальной сети средних размеров (с количеством объектов более 5), с подключением к интернету, будет содержать и коммутатор, и роутер:

ОСОБЕННОСТИ РАБОТЫ

При покупке коммутатора нужно четко понимать – зачем он вам, как будете им использоваться, как будете его обслуживать. Чтобы выбрать устройство, оптимально отвечающее вашим целям, и не переплатить лишних денег, рассмотрим основные параметры коммутаторов:
  • Вид коммутатора – управляемый, неуправляемый и настраиваемый.
  1. Неуправляемые коммутаторы – не поддерживают протоколы сетевого управления. Наиболее просты, не требуют особых настроек, стоят недорого: от 440 до 2990 рублей. Оптимальное решение для маленькой локальной сети. Со сборкой локальной сети на их основе справится даже человек, далекий от этих дел – требуется лишь купить сам коммутатор, кабели необходимой длины для подключения оборудования (лучше, в виде атч-корда , т.е. «с вилками» в сборе – не забудьте перед покупкой осмотреть оборудование, к которому будет подключаться кабель, и уточнить, какой именно тип разъема вам понадобится), ну и собрать саму сеть. Простейшая настройка описана в документации к устройству.
  2. Управляемые коммутаторы – поддерживают протоколы сетевого управления, обладают более сложной конструкцией, предлагают более широкий функционал – с помощью WEB-интерфейса или специализированных программ ими можно управлять, прописывая параметры подключенной к ним сети, приоритеты отдельных устройств и пр. Именно этот тип коммутаторов может заменять маршрутизаторы. Цена на такие устройства колеблется в диапазоне от 2499 до 14490 рублей. Данный вид коммутаторов представляет интерес для специализированных локальных сетей – видеонаблюдение, промышленная сеть, офисная сеть.
  3. Настраиваемые коммутаторы – устройства, которые поддерживают некоторые настройки (к примеру – конфигурирование VLAN (создание подгрупп)), но все равно во многом уступают управляемым коммутаторам. Настраиваемые коммутаторы могут быть как управляемыми, так и неуправляемыми.
  • Размещение коммутатора – может быть трех типов:
  1. Настольный – компактное устройство, которое можно просто разместить на столе;
  2. Настенный – небольшое устройство, которое, как правило, можно расположить как на столе, так и на стене – для последнего предусмотрены специальные пазы/крепления;
  3. Монтируемый на стойку – устройство с предусмотренными пазами для монтажа в стойку сетевого оборудования, но которое, как правило, также можно расположить на столе.
  • Базовая скорость передачи данных – скорость, с которой работает каждый из портов устройства. Как правило, в параметрах коммутатора указывается сразу несколько цифр, к примеру: 10/100Мбит/сек – это означает, что порт может работать и со скоростью 10Мбит/сек, и 100Мбит/сек, автоматически подстраиваясь под скорость источника данных. Представлены модели с базовой скоростью:
  • Общее количество портов коммутатора – один из основных параметров, в принципе именно он больше всего влияет конфигурацию локальной сети, т.к. от него зависит, какой количество оборудования вы сможете подключить. Диапазон лежит в пределах от 5 до 48 портов. Коммутаторы с количеством портов 5-15  наиболее интересны для построения маленькой домашней сети, устройства с количеством портов от 15 до 48  ориентированы уже на более серьезные конфигурации.

  • – порты, поддерживающие скорость 100Мбит/сек, бывает до 48 ;
  • Количество портов со скоростью 1Гбит/сек – порты, поддерживающие скорость 1Гбит/сек – что особенно актуально для высокоскоростной передачи данных, бывает до 48 ;
  • Поддержка РоЕ – если такой параметр есть , то означает, что подключенное к порту с этой опцией устройство можно питать по сетевому кабелю (витой паре), при этом никакого влияния на передающийся сигнал информации не оказывается. Функция особенно привлекательна для подключения устройств, к которым нежелательно, либо невозможно подводить дополнительный кабель питания – к примеру, для WEB-камер.
  • SFP-порты  – порты коммутатора для связи с устройствами более высокого уровня, либо с другими коммутаторами. По сравнению с обычными портами могут поддерживать передачу данных на более дальние расстояния (стандартный порт с RJ-45 разъемом и подключенным кабелем «витая пара» поддерживает передачу в пределах 100м). Такой порт не оснащен приемо-передатчиком, это только слот, к которому можно подключить SFP-модуль, представляющий из себя внешний приемо-передатчик для подключения нужного кабеля – оптического, витой пары.

  • Скорость обслуживания пакетов – характеристика, обозначающая производительность оборудования, и измеряющаяся в миллионах пакетов в секунду – Мррs. Как правило, подразумеваются пакеты размеров 64 байта (уточняется производителем). Величина этой характеристики различных устройств лежит в пределах от 1,4 до 71,4 Мррs .

ОБЛАСТЬ ПРИМЕНЕНИЯ


Область применения коммутаторов широка, самые распространенные сферы применения:
  • маленькая домашняя локальная сеть , включающая, к примеру, несколько компьютеров, принтер, телевизор и музыкальный центр (при условии, что все оборудование поддерживает сетевое подключение);

Для развёртывания масштабируемых сетей необходимо иметь базовое представление о сетевом оборудовании Cisco. Большинство моделей хорошо масштабируются вместе с сетью в процессе её увеличения. Поэтому у компании имеются различные серии маршрутизаторов, коммутаторов и прочего оборудования для обеспечения современной архитектуры сети и её требований.

Очень важно выбрать подходящее для текущих требований сети оборудование во время её проектировки с запасом производительности для дальнейшего её роста. Коммутаторы и маршрутизаторы играют критическую роль, особенно в среде предприятия. Поэтому в этой статье мы рассмотрим некоторые из главных критериев, которые помогут правильно выбрать оборудование Cisco для вашей сети (главным образом для корпоративной)

Коммутаторы для кампусных сетей (Campus LAN Switches ): Для обеспечения масштабируемости сетевой производительности существуют коммутаторы уровня ядра, распределения, доступа, а также компактные коммутаторы. Разнообразие этих платформ варьируется от простых коммутаторов без кулера с восемью фиксированными портами до блейд-коммутаторов, состоящих из 13 лезвий, поддерживающих сотни портов. Коммутаторы для кампусных сетей включают в себя серии Cisco 2960, 3560, 3750, 3850, 4500, 6500 и 6800.

Коммутаторы с облачным управлением (Cloud - Managed Switches ): Коммутаторы доступа с облачным управлением Cisco Meraki позволяют использовать виртуальное стекирование. Они отслеживают и конфигурируют тысячи портов коммутатора по сети без привлечения персонала IT.

Коммутаторы для ЦОД (Data Center Switches ): Центр обработки данных должен быть построен из коммутаторов, которые обеспечивают масштабируемость инфраструктуры, непрерывное функционирование и гибкость транспорта данных. Коммутаторы для ЦОД включают в себя серии Cisco Nexus и Cisco Catalyst 6500.

Коммутаторы для поставщиков услуг (Service Provider Switches ): Коммутаторы для поставщиков услуг подразделяются на две категории: коммутаторы агрегации и коммутаторы доступа к Ethernet. Коммутаторы агрегации - это Ethernet-свитчи операторского класса, которые агрегируют трафик на границе сети. Коммутаторы доступа к Ethernet включают в себя контроль данных на прикладном уровне, объединённые сервисы, виртуализацию, встроенную безопасность и облегчённое управление.

Виртуальные сети (Virtual Networking ): Сети становятся преимущественно виртуализированными. Виртуальные коммутаторы Cisco Nexus обеспечивают безопасные мультиарендные сервисы путём добавления технологии интеллектуальной виртуализации в сеть ЦОД.

Сетевые администраторы должны определить форм-фактор коммутаторов при выборе. Коммутаторы бывают фиксированной конфигурации, модульной, стековой и нестековой.

Коммутаторы фиксированной конфигурации

Коммутаторы модульной конфигурации

Коммутаторы стековой конфигурации

Высота свитча, выраженная в юнитах, также важна при монтировании в стойку. Например, коммутаторы фиксированной конфигурации, показанные на изображении выше, все являются одноюнитовыми.

Помимо этих замечаний также стоит обратить внимание на следующие особенности при выборе коммутаторов:

  • Цена: зависит от количества и скорости интерфейсов, поддерживаемых функций и возможностей расширения.
  • Плотность портов: Сетевые коммутаторы должны поддерживать соответствующее количество сетевых устройств.
  • Питание: Сейчас имеет широкое распространение питание точек доступа, IP-телефонов и даже компактных свитчей по технологии PoE (Power over Ethernet). В добавление к PoE некоторые матричные коммутаторы поддерживают запасные источники питания.
  • Надёжность: Коммутатор должен предоставлять непрерывный доступ к сети.
  • Скорость портов: Скорость сетевого соединения представляет первостепенное значение для конечного пользователя.
  • Кадровый буфер: Способность свитча хранить кадры важна в сети, где могут быть загруженные порты к серверам или другим участкам сети.
  • Масштабируемость: Количество пользователей в сети, как правило, растёт со временем, поэтому коммутатор должен предоставлять возможность для расширения сети.

Плотность портов свитча характеризуется количеством портов на одно устройство. Изображения ниже показывают три свитча с разной плотностью портов.

Коммутаторы фиксированной конфигурации обычно поддерживают до 48 портов на одно устройство. Также есть возможность установить в такие коммутаторы дополнительно до четырёх портов для устройств small form - factor pluggable (SFP). Высокая плотность портов позволяет лучше использовать ограниченное пространство и питание. Два 24-портовых свитча смогут поддерживать только 46 устройств, потому что, как минимум, один из портов каждого свитча необходим для его соединения с аплинком. Также необходимы две розетки. А если у вас есть один 48-портовый свитч, вы можете подключить до 47 устройств, так как нужен будет только один порт для соединения с аплинком и только одна розетка.

Свитчи модульной конфигурации обеспечивают очень высокую плотность портов путем добавления дополнительных карт расширения. Например, некоторые коммутаторы Catalyst 6500 поддерживают более 1000 портов.

В больших корпоративных сетях, к которым подключаются тысячи устройств, лучше использовать модульные свитчи с высокой плотностью портов, чтобы более рационально использовать пространство и питание. В противном случае вам потребуется множество коммутаторов с фиксированной конфигурацией. Такое решение потребует большое количество розеток и много свободного места.

Проектировщик сети также должен принимать во внимание проблему «узкого горлышка» аплинка: группа свитчей с фиксированной конфигурацией занимает множество дополнительных портов для агрегации полосы пропускания между свитчами для того, чтобы достигнуть необходимой производительности. С одним модульным свитчем агрегация полосы пропускания является не такой серьезной проблемой, так как плата межсоединений способна обеспечить необходимой полосой пропускания устройства, подключённые к карте расширения портов.

Скорость коммутации - это значение, определяющее скорость обработки информации свитчем за одну секунду. Линейки коммутаторов классифицируются по скорости коммутации.

Скорость коммутации

Свитчи начального уровня имеют скорость коммутации гораздо ниже, чем свитчи корпоративного класса. Скорость коммутации является очень важным показателем при выборе свитча. Если скорость коммутации слишком маленькая, то свитч не сможет обеспечить полную пропускную способность всех его портов. Физическая скорость - это показатель теоретически возможной максимальной скорости работы каждого Ethernet-порта коммутатора. Значения физической скорости могут быть такими: 100 Мбит/сек, 1 Гбит/сек, 10 Гбит/сек или 100 Гб/сек.

Например, типичный 48-портовый гигабитный свитч, функционирующий при полной физической скорости, способен генерировать 48 Гбит трафика в секунду. Но если свитч поддерживает скорость коммутации только 32 Гбит/сек, то все его порты одновременно не смогут работать при полной физической скорости. Однако, свитчи уровня доступа обычно не нуждаются в полной скорости, потому что они физически ограничены аплинком. Это означает, что менее дорогие и менее производительные свитчи могут быть использованы на уровне доступа, а более дорогие высокопроизводительные лучше использовать на уровнях распределения и ядра сети, где от скорости коммутации очень сильно зависит производительность всей системы.

Технология Power over Ethernet ( PoE ) позволяет коммутатору подавать питание на устройство по кабелю Ethernet. Эта функция обычно используется некоторыми IP-телефонами и беспроводными точками доступа.

Power over Ethernet

РоЕ предоставляет большую гибкость при установке точек доступа и IP-телефонов. С этой технологией их можно установить везде, где есть Ethernet-кабель. Сетевой администратор должен быть уверен, что технология РоЕ необходима, т.к. свитчи, поддерживающие эту технологию, стоят значительно дороже.

Относительно новые серии коммутаторов Cisco Catalyst 2960-C и 3560-C поддерживают проброс РоЕ

Проброс PoE

Проброс РоЕ позволяет сетевому администратору подавать питание на РоЕ-устройства, подключенные к свитчу, и на сам свитч от вышестоящих коммутаторов.

Многоуровневые коммутаторы обычно используются на уровнях ядра и распределения сети. Особенностью многоуровневых свитчей является возможность построения таблицы маршрутизации, поддержка нескольких протоколов маршрутизации и коммутации IP-пакетов со скоростью, близкой к коммутации 2-го уровня. Многоуровневые коммутаторы обычно поддерживают специализированное оборудование такое, как ASIC ( Application - Specific Integrated Circuit , интегральная схема специального назначения) . ASIC вместе с выделенными структурами программных данных могут выполнять коммутацию IP-пакетов без использования ЦП.

В последнее время стала очень популярна тенденция к чистой маршрутизации 3-го уровня с помощью коммутаторов. Когда коммутаторы впервые использовались в сетях, ни один из них не поддерживал маршрутизацию. Сейчас же почти все поддерживают. Скорее всего, скоро все свитчи будут включать в себя процессор маршрутизации, потому что стоимость такого свитча постепенно уменьшается. В конечном счёте, термин многоуровневый коммутатор станет неактуальным.

Коммутатор Catalyst 2960 наглядно показывает миграцию в среду 3го уровня.

Так же, как и коммутаторы, маршрутизаторы выполняют важную функцию на уровнях доступа, распределения и ядра сети. Во многих малых сетях (таких, как сети филиалов) все 3 уровня выполняются на маршрутизаторе.

В корпоративной сети на уровне распределения необходима маршрутизация. Без процесса маршрутизации пакеты не смогут попасть во внешнюю сеть.

Маршрутизаторы играют важную роль в сетевых технологиях, соединяя между собой различные объекты внутри корпоративной сети, предоставляя резервные маршруты и обеспечивая взаимодействие провайдеров в Интернете. Роутеры также могут выступать в роли преобразователей между различными носителями и протоколами, например можно принимать пакеты из сети Ethernet и переинкапсулировать их для передачи в последовательную сеть.

Маршрутизаторы используют целевые IP-адреса для доставки пакетов к соответствующему месту назначения. Роутеры меняют маршрут на альтернативный, если пропадает сетевое соединение или возрастает нагрузка трафика. Все устройства локальной сети имеют назначенный IP-адрес маршрутизатора в своей сетевой конфигурации. Интерфейс роутера является шлюзом по умолчанию.

Маршрутизаторы также выполняют и другие важные функции:

- ограничивают широковещательный трафик в ЛВС

- фильтруют нежелательный трафик с помощью ACL (Access Control Lists - списки контроля доступа)

- связывают между собой географически удалённые локации

- логически группируют пользователей, которым нужны одни и те же сервисы

Для предприятий и провайдеров услуг эффективная маршрутизация и быстрейшее восстановление после сбоев имеет огромное значение.

  • Маршрутизаторы филиала /отделения компании ( Branch Routers ) : Маршрутизаторы отделения компании оптимизируют службы филиалов; с помощью одной платформы они обеспечивают оптимальные прикладные услуги в филиалах и глобальной сети. Для обеспечения максимальной доступности услуг необходимы сети, работающие в круглосуточном режиме. Сети филиалов с высокой доступностью должны обеспечивать быстрое восстановления после мелких сбоев, а также простое управление и лёгкую настройку сети.
  • Пограничные маршрутизаторы ( Network Edge Routers ) : Пограничные маршрутизаторы обеспечивают высокопроизводительные, безопасные и надёжные сервисы, объединяющие кампус, ЦОД и сеть филиала. Они предоставляют пользователям высококачественный мультимедиа-контент, а также его интерактивность, персонализацию, мобильность и управление. Сегодня для пользователей очень важно получить доступ к контенту в любое время и в любом месте, с любого устройства, будучи дома, на работе или в пути. Пограничные маршрутизаторы должны предоставлять неограниченные видео- и мобильные сервисы высокого качества.
  • Маршрутизаторы уровня провайдера ( Service Provider Routers ) : Маршрутизаторы уровня провайдера дифференцируют сервисы и за счёт предоставления комплексных масштабируемых решений увеличивают прибыль. Главные задачи операторов - оптимизировать процессы, уменьшить расходы и улучшить масштабируемость и гибкость. Это позволяет предоставлять интернет-услуги следующего поколения повсеместно. Данные системы служат для улучшения и упрощения эксплуатации сетей дистрибуции услуг.

Сетевым администраторам в среде предприятия нужно иметь возможность поддерживать множество различных роутеров, начиная с малых настольных и заканчивая стоечными блейд-маршрутизаторами. Одним из маршрутизаторов Cisco на рынке сегодня является роутер серии Cisco ISR G 2. Как правильно выбрать маршрутизатор Cisco? По данной ссылке вы можете получить больше информации о выборе роутера Cisco ISR G2 Series для вашей сети.

По материалам статьи: http :// www . ciscopress . com / articles / article . asp ? p =2189637& seqNum =5

Сетевой коммутатор

Сетевой коммутатор - устройство, предназначенное для соединения несколькихузловкомпьютерной сетив пределах одного или несколькихсегментов сети. Коммутатор работает наканальном (втором) уровнемодели OSI. Коммутаторы были разработаны с использованиеммостовых технологийи часто рассматриваются как многопортовыемосты. Для соединения нескольких сетей на основесетевого уровняслужатмаршрутизаторы(3 уровень OSI).

В отличие от концентратора (1 уровень OSI), который распространяет трафик от одного подключённого устройства ко всем остальным, коммутатор передаёт данные только непосредственно получателю (исключение составляет широковещательный трафик всем узлам сети и трафик для устройств, для которых неизвестен исходящий порт коммутатора). Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.

Принцип работы коммутатора

Коммутатор хранит в памяти (т.н. ассоциативной памяти) таблицу коммутации, в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует фреймы (кадры) и, определив MAC-адрес хоста-отправителя, заносит его в таблицу на некоторое время. Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, MAC-адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC-адрес хоста-получателя не ассоциирован с каким-либо портом коммутатора, то кадр будет отправлен на все порты, за исключением того порта, с которого он был получен. Со временем коммутатор строит таблицу для всех активных MAC-адресов, в результате трафик локализуется. Стоит отметить малую латентность (задержку) и высокую скорость пересылки на каждом порту интерфейса.

Режимы коммутации

Существует три способа коммутации. Каждый из них - это комбинация таких параметров, как время ожидания и надёжность передачи.

    С промежуточным хранением (Store and Forward). Коммутатор читает всю информацию в кадре, проверяет его на отсутствие ошибок, выбирает порт коммутации и после этого посылает в него кадр.

    Сквозной (cut-through). Коммутатор считывает в кадре только адрес назначения и после выполняет коммутацию. Этот режим уменьшает задержки при передаче, но в нём нет метода обнаружения ошибок.

    Бесфрагментный (fragment-free) или гибридный . Этот режим является модификацией сквозного режима. Передача осуществляется после фильтрации фрагментов коллизий (первые 64 байта кадра анализируются на наличие ошибки и при её отсутствии кадр обрабатывается в сквозном режиме).

Задержка, связанная с «принятием коммутатором решения», добавляется к времени, которое требуется кадру для входа на порт коммутатора и выхода с него, и вместе с ним определяет общую задержку коммутатора.

Симметричная и асимметричная коммутация

Свойство симметрии при коммутации позволяет дать характеристику коммутатора с точки зрения ширины полосы пропускания для каждого его порта. Симметричный коммутатор обеспечивает коммутируемые соединения между портами с одинаковой шириной полосы пропускания, например, когда все порты имеют ширину пропускания 10 Мб/с или 100 Мб/с.

Асимметричный коммутатор обеспечивает коммутируемые соединения между портами с различной шириной полосы пропускания, например, в случаях комбинации портов с шириной полосы пропускания 10 Мб/с или 100 Мб/с и 1000 Мб/с.

Асимметричная коммутация используется в случае наличия больших сетевых потоков типа клиент-сервер, когда многочисленные пользователи обмениваются информацией с сервером одновременно, что требует большей ширины пропускания для того порта коммутатора, к которому подсоединён сервер, с целью предотвращения переполнения на этом порте. Для того чтобы направить поток данных с порта 100 Мб/с на порт 10 Мб/с без опасности переполнения на последнем, асимметричный коммутатор должен иметь буфер памяти.

Асимметричный коммутатор также необходим для обеспечения большей ширины полосы пропускания каналов между коммутаторами, осуществляемых через вертикальные кросс-соединения, или каналов между сегментами магистрали.

Буфер памяти

Для временного хранения фреймов и последующей их отправки по нужному адресу коммутатор может использовать буферизацию. Буферизация может быть также использована в том случае, когда порт пункта назначения занят. Буфером называется область памяти, в которой коммутатор хранит передаваемые данные.

Буфер памяти может использовать два метода хранения и отправки фреймов: буферизация по портам и буферизация с общей памятью. При буферизации по портам пакеты хранятся в очередях (queue), которые связаны с отдельными входными портами. Пакет передаётся на выходной порт только тогда, когда все фреймы, находившиеся впереди него в очереди, были успешно переданы. При этом возможна ситуация, когда один фрейм задерживает всю очередь из-за занятости порта его пункта назначения. Эта задержка может происходить даже в том случае, когда остальные фреймы могут быть переданы на открытые порты их пунктов назначения.

При буферизации в общей памяти все фреймы хранятся в общем буфере памяти, который используется всеми портами коммутатора. Количество памяти, отводимой порту, определяется требуемым ему количеством. Такой метод называется динамическим распределением буферной памяти. После этого фреймы, находившиеся в буфере, динамически распределяются выходным портам. Это позволяет получить фрейм на одном порте и отправить его с другого порта, не устанавливая его в очередь.

Коммутатор поддерживает карту портов, в которые требуется отправить фреймы. Очистка этой карты происходит только после того, как фрейм успешно отправлен.

Поскольку память буфера является общей, размер фрейма ограничивается всем размером буфера, а не долей, предназначенной для конкретного порта. Это означает, что крупные фреймы могут быть переданы с меньшими потерями, что особенно важно при асимметричной коммутации, то есть когда порт с шириной полосы пропускания 100 Мб/с должен отправлять пакеты на порт 10 Мб/с.

Возможности и разновидности коммутаторов

Коммутаторы подразделяются на управляемые и неуправляемые (наиболее простые).

Более сложные коммутаторы позволяют управлять коммутацией на сетевом (третьем) уровне модели OSI. Обычно их именуют соответственно, например «Layer 3 Switch» или сокращенно «L3 Switch». Управление коммутатором может осуществляться посредством Web-интерфейса, интерфейса командной строки (CLI), протокола SNMP, RMON и т. п.

Многие управляемые коммутаторы позволяют настраивать дополнительные функции: VLAN, QoS, агрегирование, зеркалирование. На данный момент многие коммутаторы уровня доступа обладают такими расширенными возможностями, как сегментация трафика между портами, контроль трафика на предмет штормов, обнаружение петель, ограничение количества изучаемых mac-адресов, ограничение входящей/исходящей скорости на портах, функции списков доступа и т.п.

Сложные коммутаторы можно объединять в одно логическое устройство - стек - с целью увеличения числа портов. Например, можно объединить 4 коммутатора с 24 портами и получить логический коммутатор с 90 ((4*24)-6=90) портами либо с 96 портами (если для стекирования используются специальные порты).

Как и какое оборудование лучше использовать на уровне доступа в такой малой организации?

Шашечки или ехать? Если ехать, то с какой скоростью? Какие сетевые сервисы используют сотрудники? У меня в одном филиале на ~30 сотрудников вообще неуправляемые коммутаторы стоят (но я не говорю, что это хорошо).
Если используется VoIP - смотрите в сторону "энтерпрайза" типа цисок. Или проверенных моделей D-Link. Главное чтоб QoS был. Если не используется - ставьте что душе угодно.
Нужно ли по коммутатору на каждое помещение или, например, один 24-портовый коммутатор на несколько помещений?

Чем меньше коммутаторов, тем меньше затрат на администрирование. Отталкивайтесь от площади и геометрии ваших помещений. Если от одного коммутатора доступа на 24 порта нужно тянуть километры кабеля до непосредственного клиента, такой доступ нафиг не нужен.
Кто эксплуатирует Cisco, подскажите, целесообразно ли использовать на уровне доступа SmallBusiness в среднем, крупном?

Использую SG300 в ядре в головном офисе. Брат жив, зависимость есть. SMB серия тупая как пробка, но надежная как танк. Для действительно крупных сетей она не подойдет из-за количества поддерживаемых фич и циферок в этих фичах (у меня на ней ARP таблица почти забита, например).

Короче, расскажу свою success-story. Мне досталась в наследство плоская сетка на гирляндах неуправляемых d/tp-linkов с DGS-1500 посередине. Работало все это... ну не оч. Поэтому пару лет назад я задавал схожий вопрос на этом ресурсе, тоже долго думал, выбирал железки и так далее. Мне не нужен был VoIP, не нужна была динамическая маршрутизация, L3 на доступе и прочие ништяки. К тому же, наша сеть, хоть и большая, была совершенно нетребовательна к полосе пропускания: больше 40 Мбит сложно было увидеть цифры.
Советы были примерно как у : новенькие блестящие циски 2960 в доступ, 3750Х в ядро и все такое. И сначала я даже им последовал и купил SF300.
Однако в итоге получилось все немного иначе:
Ядро - Cisco SG300-10
Доступ - бушные HP ProCurve 2650/2610, единственный новенький SF300-48
Серверный доступ - HP ProCurve 2824
Зная, что все эти прокурвы уже старше мамонтов, все коммутаторы HP брались в двойном экземпляре. Итог: по цене одного SF300 был куплен вагон 24/48 портовых свитчей, обладающих не меньшим функционалом. За 2 года ни одна прокурва не принесла никаких проблем (в отличие от цисок...), а после очистки корпуса от грязи мылом - я люблю извращения - еще и блестят не хуже новеньких Cisco SMB.
Сейчас ценник на такие HP стал неприлично низким (в 3 раза дешевле, чем тот, по которому покупал я), так что рекомендую обратить на них внимание.







2024 © gtavrl.ru.