Процессоры или ядра. Многоядерные процессоры: принципы работы


В чем различия между четырехъядерными и восьмиядерными процессорами смартфонов? Объяснение достаточно простое. В восьмиядерных чипах в два раза больше процессорных ядер, чем в четырехъядерных. На первый взгляд восьмиядерный процессор представляется вдвое более мощным, не так ли? На самом деле ничего подобного не происходит. Чтобы понять, почему восьмиядерность процессора не удваивает производительность смартфона вдвое, потребуются некоторые пояснения. уже наступило. Восьмиядерные процессоры, о которых совсем недавно можно было только мечтать, получают все большее распространение. Но, оказывается, их задача состоит не в том, чтобы повысить производительность устройства.

Четырех- и восьмиядерные процессоры. Производительность

Сами термины «восьмиядерный» и « четырехъядерный» отражают число ядер центрального процессора.

Но ключевое различие между этими двумя типами процессоров — по крайней мере по состоянию на 2015 год — состоит в способе установки процессорных ядер.

В четырехъядерном процессоре все ядра способны работать одновременно, обеспечивая быструю и гибкую многозадачность, делая более ровными 3D-игры и повышая скорость работы камеры, а также осуществляя другие задачи.

Современные восьмиядерные чипы, в свою очередь, просто состоят из двух четырехъядерных процессоров, которые распределяют между собой различные задачи в зависимости от их типа. Чаще всего в восьмиядерном чипе присутствует набор из четырех ядер с более низкой тактовой частотой, чем во втором наборе. Когда требуется выполнить сложную задачу, за нее, разумеется, берется более быстрый процессор.


Более точным термином, чем «восьмиядерный» стал бы «двойной четырехъядерный». Но это звучит не так красиво и не подходит для маркетинговых задач. Поэтому эти процессоры называют восьмиядерными.

Зачем нужны два набора процессорных ядер?

В чем причина сочетания двух наборов процессорных ядер, передающих задачи один другому, в одном устройстве? Для обеспечения энергоэффективности.

Более мощный центральный процессор потребляет больше энергии и батарею приходится чаще заряжать. А аккумуляторные батареи намного более слабое звено смартфона, чем процессоры. В результате — чем более мощен процессор смартфона, тем более емкая батарея ему нужна.

При этом для большинства задач смартфона вам не понадобится столь высокая вычислительная производительность, какую может обеспечить современный процессор. Перемещение между домашними экранами, проверка сообщений и даже веб-навигация — не столь требовательные к ресурсам процессора задачи.

Но HD-видео, игры и работа с фотографиями такими задачами являются. Поэтому восьмиядерные процессоры достаточно практичны, хотя элегантным это решение назвать трудно. Более слабый процессор обрабатывает менее ресурсоемкие задачи. Более мощный — более ресурсоемкие. В итоге сокращается общее энергопотребление по сравнению с той ситуацией, когда обработкой всех задач занимался бы только процессор с высокой тактовой частотой. Таким образом, сдвоенный процессор прежде всего решает задачу повышения энергоэффективности, а не производительности.

Технологические особенности

Все современные восьмиядерные процессоры базируются на архитектуре ARM, так называемой big.LITTLE.

Эта восьмиядерная архитектура big.LITTLE была анонсирована в октябре 2011 года и позволила четырем низкопроизводительным ядрам Cortex-A7 работать совместно с четырьмя высокопроизводительными ядрами Cortex-A15. ARM с тех пор ежегодно повторяла этот подход, предлагая более способные чипы для обоих наборов процессорных ядер восьмиядерного чипа.

Некоторые из основных производителей чипов для мобильных устройств сосредоточили свои усилия на этом образце «восьмиядерности» big.LITTLE. Одним из первых и наиболее примечательных стал собственный чип компании Samsung, известный Exynos. Его восьмиядерная модель использовалась начиная с Samsung Galaxy S4, по крайней мере в некоторых версиях устройств компании.

Сравнительно недавно Qualcomm также начала применение big.LITTLE в своих восьмиядерных чипах Snapdragon 810 CPU. Именно на этом процессоре базируются такие известные новинки рынка смартфонов, как и G Flex 2, ставший компании LG.

В начале 2015 года NVIDIA представила Tegra X1, новый суперпроизводительный мобильный процессор, который компания предназначает для автомобильных компьютеров. Основной функцией X1 является его вызываемый консольно («console-challenging») графический процессор, который также основывается на архитектуре big.LITTLE. То есть он также станет восьмиядерным.

Велика ли разница для обычного пользователя?

Велика ли разница между четырех- и восьмиядерным процессором смартфона для обычного пользователя? Нет, на самом деле она очень мала, считает Йон Манди.

Термин «восьмиядерный» вносит некоторую неясность, но на самом деле он означает дублирование четырехъядерных процессоров. В итоге получаются два работающих независимо четырехъядерных набора, объединенных одним чипом для повышения энергоэффективности.

Нужен ли восьмиядерный процессор в каждом современном смартфоне. Такой необходимости нет, полагает Йон Манди и приводит пример Apple, обеспечивающих достойную энергоэффективность своих iPhone при всего двухъядерном процессоре.

Таким образом, восьмиядерная архитектура ARM big.LITTLE является одним из возможных решений одной из самых важных задач, касающихся смартфонов — времени работы от одной зарядки батареи. По мнению Йона Манди, как только найдется другое решение этой задачи, так и прекратится тренд установки в одном чипе двух четырехъядерных наборов, и подобные решения .

Знаете ли вы другие преимущества восьмиядерных процессоров смартфонов?

QX | 22 июля 2015, 14:45
Не только частота, техпроцесс тоже. Современные 2-ядерные процессоры по 3 ГГц не сравнить с первыми 2-ядерниками, из тех что тоже по 3 ГГц. Частота одинаковая, но старые просто жуткие тормоза в сравнении с новыми. В итоге современный 2-ядерный i3 намного лучше, чем 4-ядерник Quad Q6600. Даже Pentium G посвежее лучше старого Quadа.

QX | 11 июля 2015, 12:18
Здесь разница в частоте не велика, 3,5 против 3 ГГц. Потому интересны 4 ядра. Но конечно если остальные характеристики тоже не отстают. Много ядер нужно для архивации, кодирования видео и т.п. Взяв 2 ядерник ещё и сэкономить можно, слегка. Ещё вопрос, как много будете работать на нём. Ну и лучше бы Вы всё-таки обе модели конкретно назвали. А так, я бы Вам посоветовал Core i3 помощнее и посвежее.

MaKos007 | 30 марта 2015, 16:00
Я тут буду растекаться мысью по древу. потому сразу скажу - ваш выбор двухъядерный процессор с более высокой частотой. Если теория не интересна, то дальше можно не читать.

Частота процессора представляет собой, фактически, количество операций, выполняемых им в единицу времени. Таким образом, чем выше частота, тем больше действий выполняется за секунду, например.

Что же у нас с количеством ядер... При наличии более чем одного ядра процессор может обсчитывать более одной задачи. Это как ленты конвейера. Одна лента конвейера работает быстро, но две параллельные ленты, на которых идут операции, выдают в два раза больше результата. Так что в теории двухъядерные решения будут работать вдвое быстрее одноядерного.

Это теория, но как и с конвейерами, эти два потока надо чем-то нагрузить. при этом нагрузить правильно, чтобы каждая лента работала с полной отдачей. В случае с процессорами это зависит от архитектуры программ и игр, которые используют эту самую многоядерность. Если приложение умеет разделять задачи на несколько потоков (читай - использовать многоядерность процессора), то многоядерность может дать значимый прирост в скорости исполнения команд. А ежели не умеет или задачи такие, что разделить невозможно, тогда совершенно неважно много ядер в CPU или нет.

На самом деле, вопрос оптимального количества ядер - сложный. Здесь еще важна архитектура самих ядер и связей между ними. Так первые многоядерные процессоры имели значительно менее функциональное устройство, чем современные. Кроме того, следует учитывать, что современные ОС Windows 7 и Windows 8 (я не рассматриваю здесь *nix системы и их поддержку многоядерных процессоров - отдельная и очень интересная тема) найчились очень хорошо распараллеливать многие задачи. Таким образом, многоядерность помогает не тормозить основные процессы (используемые пользователем приложения и игры) из-за выполнения фоновых задач. Таким образом, антивирусная защита и фаервол не станут тормозить (точнее, в меньшей степени будут тормозить) запущенную игру или работу в Фотошопе.

Для каких программ важна многоядерность. Проведя некоторое время в интернете, можно выяснить, что она ускоряет конвертацию видео и аудио; рендеринг 3D-моделей, шифрование сигнала и т.п. Вам для работы в Photoshop и видеомонтажа не нужно 4 ядра. Вполне достаточно, как я уже говорил, двух, но с более высоким быстродействием каждого из них.

teleport | 21 апреля 2013, 01:30
Простой подсчет производительности показывает: для 2-х ядерного общая производительность 2 x 3.5 = 7, для 4-х ядерного - 4 x 3 = 12. Так что 4-х ядерный почти в 2 раза мощнее. Кроме того он наверняка современнее, а значит экономичнее и производительнее. А если используется только одно ядро - меньше греется, поскольку частота одного ядра немного ниже, но для нагрева это существенно.

Для видеомонтажа процессор скорее всего не критичен там в основном задействуются ресурсы видеокарты или специальной платы видеомонтажа. Но процессор в этом тоже учавствует и если 2-х ядерный отдаст под эту задачу одно ядро, то остальные задачи (разные антивири) будут бороться за оставшееся ядро, что приведет к жуткой тупизне. Короче многоядерность лучше.

yang | 11 апреля 2013, 20:22
В данном случае эффективнее и экономичнее во всех отношениях будет двухъядерный процессор.

Обнаружили неприятную проблему предела тактовой частоты. Достигнув порога в 3 ГГц, разработчики столкнулись с значительным ростом энергопотребления и тепловыделения своих продуктов. Уровень технологий 2004 года не позволял существенно уменьшить размеры транзисторов в кремниевом кристалле и выходом из сложившейся ситуации стала попытка не наращивать частоты, а увеличить количество операций, выполняемых за один такт. Переняв опыт серверных платформ, где многопроцессорная компоновка уже была испытана, было решено объединить два процессора на одном кристалле.

С тех пор прошло немало времени, в широком доступе появились ЦП с двумя, тремя, четырьмя, шестью и даже восемью ядрами. Но основную долю на рынке до сих пор занимают 2 и 4-ядерные модели. Изменить ситуацию пытаются в AMD, но их архитектура Bulldozer не оправдала надежд и бюджетные восьмиядерники все еще не очень популярны в мире. Поэтому вопрос, что лучше: 2 или 4-ядерный процессор , до сих пор остается актуальным.

Разница между 2 и 4-ядерным процессором

На аппаратном уровне основное отличие 2-ядерного процессора от 4-ядерного – количество функциональных блоков. Каждое ядро, по сути, представляет собой отдельный ЦП, оснащенный своими вычислительными узлами. 2 или 4 таких ЦП объединены между собой внутренней скоростной шиной и общим контроллером памяти для взаимодействия с ОЗУ. Другие функциональные узлы тоже могут быть общими: у большинства современных ЦП индивидуальной является кэш-память первого (L1) и второго (L2) уровня, блоки целочисленных вычислений и операций с плавающей запятой. Кэш L3, отличающийся относительно большим объемом, один и доступен всем ядрам. Отдельно можно отметить уже упомянутые AMD FX (а также ЦП Athlon и APU серии A): у них общими являются не только кэш-память и контроллер, но и блоки вычислений с плавающей запятой: каждый такой модуль одновременно принадлежит двум ядрам.

Схема четырехъядерного процессора AMD Athlon

С пользовательской точки зрения разница между 2 и 4-ядерным процессором заключается в количестве задач, которые ЦП может обработать за один такт. При одинаковой архитектуре, теоретическая разница будет составлять 2 раза для 2 и 4 ядер или 4 раза для 2 и 8 ядер, соответственно. Таким образом, при одновременной работе нескольких процессов, увеличение количества должно повлечь за собой рост быстродействия системы. Ведь вместо 2 операций четырехъядерный ЦП за один момент времени сможет выполнять сразу четыре.

Чем обусловлена популярность двухъядерных ЦП

Казалось бы, если увеличение числа ядер влечет за собой рост производительности, то на фоне моделей с четырьмя, шестью или восемью ядрами у двухядерников нет никаких шансов. Тем не менее, мировой лидер на рынке ЦП, компания Intel, ежегодно обновляет ассортимент своей продукции и выпускает новые модели всего с парой ядер (Core i3, Celeron, Pentium). И это на фоне того, что даже в смартфонах и планшетах на такие ЦП пользователи смотрят с недоверием или презрением. Чтобы понять, почему самые популярные модели – именно процессоры с двумя ядрами, следует учесть несколько основных факторов.

Intel Core i3 — самые популярные 2-ядерные процессоры для домашнего ПК

Проблема совместимости . При создании программного обеспечения разработчики стремятся сделать так, чтобы оно могло функционировать как на новых компьютерах, так и уже существующих моделях ЦП и ГП. Учитывая ассортимент на рынке, важно обеспечить, чтобы игра нормально работала и на двух ядрах, и на восьми. Большинство всех существующих домашних ПК оснащены двухъядерным процессором, поэтому поддержке таких компьютеров уделяется больше всего внимания.

Сложность распараллеливания задач . Чтобы обеспечить эффективное задействование всех ядер, вычисления, производимые в процессе работы программы, следует разделить на равные потоки. Например, задача, которая может оптимально задействовать все ядра, выделив каждому из них по одному или два процесса — одновременная компрессия нескольких видеороликов. С играми – сложнее, так как все выполняемые в них операции взаимосвязаны. Несмотря на то, что основную работу выполняет графический процессор видеокарты, информацию для формирования 3d-картинки подготавливает именно ЦП. Сделать так, чтобы каждое ядро обрабатывало свою порцию данных, а затем подавало ее ГП синхронно с другими, достаточно сложно. Чем больше одновременных потоков вычислений нужно обрабатывать – тем тяжелее реализация задачи.

Преемственность технологий . Разработчики программного обеспечения используют для своих новых проектов уже существующие наработки, подвергающиеся неоднократной модернизации. В отдельных случаях доходит до того, что такие технологии уходят корнями в прошлое на 10-15 лет. Разработка, основанная на проекте десятилетней давности, кардинальной переработке для идеальной оптимизации поддается очень неохотно, если не совсем никак. Как следствие, наблюдается неспособность софта рационально использовать аппаратные возможности ПК. Игра S.T.A.L.K.E.R. Зов Припяти, вышедшая в 2009 году (в эпоху расцвета многоядерных ЦП) построена на движке 2001 года, поэтому не умеет нагружать более, чем одно ядро.

S.T.A.L.K.E.R. полноценно задействует только одно ядоро 4-ядерного ЦП

Такая же ситуация и с популярной онлайн-РПГ World of Tanks: движок Big World, на котором она базируется, создан в 2005 году, когда многоядерные ЦП еще не воспринимались, как единственно возможный путь развития.

World of Tanks тоже не умеет распределять нагрузку на ядра равномерно

Финансовые сложности . Следствием этой проблемы является предыдущий пункт. Если создавать каждое приложение с нуля, не используя имеющиеся технологии, его реализация обойдется в баснословные суммы. К примеру, стоимость разработки GTA V составила более 200 млн долларов. При этом, некоторые технологии все равно не были созданы «из чистого листа», а позаимствованы из предыдущих проектов, так как игра писалась под 5 платформ сразу (Sony PS3, PS4, Xbox 360 и One, а также ПК).

GTA V оптимизирована под многоядерность и умеет равномерно загружать процессор

Все эти нюансы не позволяют в полной мере использовать потенциал многоядерных процессоров на практике. Взаимозависимость производителей аппаратного обеспечения и разработчиков софта порождает замкнутый круг.

Какой процессор лучше: 2 или 4-ядерный

Очевидно, что при всех преимуществах потенциал многоядерных процессоров до сих пор остается нереализованным до конца. Некоторые задачи вообще не умеют равномерно распределять нагрузку и работают в один поток, другие – делают это с посредственной эффективностью, и лишь малая доля ПО полноценно взаимодействуют со всеми ядрами. Поэтому вопрос, какой лучше процессор, 2 или 4 ядра , купить, требует внимательного изучения текущей ситуации.

На рынке представлены продукты двух производителей: Intel и AMD, отличающиеся особенностями реализации. Advanced Micro Devices традиционно делают упор на многоядерность, в то время как «Интел» неохотно идут на такой шаг и наращивают количество ядер только если это не приводит к снижению удельной производительности в расчете на ядро (избежать которого очень сложно).

Увеличение количества ядер снижает итоговую производительность каждого из них

Как правило, общая теоретическая и практическая производительность многоядерного ЦП ниже, чем аналогичного (построенного на такой же микроархитектуре, с тем же техпроцессорм) с одним ядром. Вызвано это тем, что ядра используют общие ресурсы, и это не лучшим образом сказывается на быстродействии. Таким образом, нельзя просто приобрести мощный четырех- или шестиъядерный процессор с расчетом на то, что он точно не будет слабее двухъядерника из той же серии. В некоторых ситуациях – будет, при том ощутимо. В качестве примера можно привести запуск старых игр на компьютере с восьмиядерным процессором AMD FX : FPS при этом порой ниже, чем на аналогичном ПК, но с четырехъядерным ЦП.

Нужна ли сегодня многоядерность

Значит ли это, что много ядер не нужно? Несмотря на то, что вывод кажется закономерным — нет. Легкие повседневные задачи (такие как веб-серфинг или работа с несколькими программами одновременно) положительно реагируют на увеличение числа ядер процессора. Именно по этой причине производители смартфонов делают упор на количество, опуская на второй план удельную производительность. Opera (и другие браузеры на движке Chromium), Firefox запускают каждую открытую вкладку в виде отдельного процесса, соответственно, чем больше ядер – тем быстрее переход между вкладками. Файловые менеджеры, офисные программы, проигрыватели – сами по себе не являются ресурсоемкими. Но при потребности часто переключаться между ними многоядерный процессор позволит повысить производительность системы.

Браузер Opera каждой вкладке присваивает отдельный процесс

В компании Intel осознают это, потому технология HuperThreading, позволяющая ядру обрабатывать второй поток силами неиспользуемых ресурсов, появилась еще во времена Pentium 4. Но она не позволяет в полной мере компенсировать недостаток производительности.

В «Диспетчере задач» 2-ядерный процессор с Huper Threading отображается, как 4-ядерный

Создатели игр, тем временем, постепенно наверстывают упущенное. Появление новых поколений консолей Sony Play Station и Microsoft Xbox простимулировало разработчиков уделять больше внимания многоядерности. Обе приставки созданы на базе восьмиядерных чипов AMD, поэтому теперь программистам не нужно тратить уйму сил на оптимизацию при портировании игры на ПК. С ростом популярности этих консолей — с облегчением смогли вздохнуть и те, кто разочаровался в приобретении AMD FX 8xxx. Многоядерники усиленно отвоевывают позиции на рынке, о чем можно убедиться на примере обзоров.

В последние годы производители процессоров не стремятся к достижению максимальной тактовой частоты - вместо этого они наращивают мощь CPU, увеличивая количество ядер.
Расскажем, выиграют ли пользователи при покупке новых многоядерных чипов.

Первый многоядерный чип был выпущен в 2001 году. Процессор под названием Power4 от компании IBM мог похвастаться двумя 64битными ядрами на основе микроархитектуры PowerPC, но применялся исключительно для решения узкопрофильных задач. Пользователям же персональных ПК пришлось ждать появления двуядерного CPU еще долгих четыре года. Наконец, в мае 2005-го, сразу вслед за двуядерным 64-битным микропроцессором
Opteron для серверных систем от компании AMD, вышел в свет двуядерный Intel Pentium D для домашних персональных компьютеров. В ноябре 2007 года переполох в компьютерной индустрии устроила компания AMD, которой удалось уместить четыре ядра на одном кристалле, в результате чего был создан процессор AMD Phenom Х4 с микроархитектурой К10. Впрочем, из-за огрехов разработки нового творения полноценной революции не получилось, а главным игроком на рынке в то время стала фирма Intel, запустившая в продажу первый «четырехъядерник» Intel Core 2 Quad.

В 2009 году в продуктовых линейках двух давних конкурентов произошли существенные изменения. На смену устаревшему семейству Intel Core 2 Duo пришли новые процессоры Intel серий Core i3, i5 и i7. Они обзавелись микроархитектурой Sandy Bridge и производятся по 32-нанометровому техпроцессу. Также 14 октября 2011 года увидел свет новейший шестиядерный процессор Intel Core i7-3960X на базе архитектуры Sandy Bridge-E, являющийся на сегодняшний день самым быстрым CPU от компании Intel для домашних пользователей. Тем временем AMD существенно доработала свой четырехъядерный Phenom Х4, увеличив объем кеш-памяти и освоив 45-нанометровый технологический процесс, а в апреле 2010 года анонсировала «шестиядерник» AMD Phenom II Х6 под кодовым именем Thuban, который позволил не отпустить Intel слишком далеко вперед. Более того, совсем недавно состоялась презентация процессоров AMD на основе новейшей микроархитектуры Bulldozer. Одним из важнейших нововведений является модульный принцип расположения ядер в системе х86 - по два на каждом модуле. Благодаря этой особенности компании несложно выстроить модельный ряд, предлагая решения с различными количеством вычислительных блоков и тактовыми частотами. В свете своих последних творений компания AMD настроена на серьезное противостояние с процессорами Intel.
Мы протестировали и сравнили производительность топовых четырех-, шести- и восьмиядерных CPU от Intel и AMD и решили разобраться, стоит ли вообще сегодня переплачивать за лишние ядра.

Параллельные вычисления

Еще при появлении первых процессоров производители старались максимально увеличить их мощность. В 1995 году университетом Вашингтона была выдвинута идея поддержки «одновременной многопоточности», которая была подхвачена и реализована компанией Intel в виде технологии Hyper-Threading. На практике это выглядело как разделение одного физического CPU на два виртуальных и значительная оптимизация работы процессора. Первым микрочипом с поддержкой данной технологии стал Intel Pentium 4, выпушенный 14 ноября 2002 года. По словам представителей компании, внедрение технологии Hyper-Threading вместе с необходимым увеличением площади кристалла на 5% позволило повысить производительность чипа на 15-30%. Правда, данные цифры напрямую зависели от программ, используемых для вычислений. Если говорить о создании аналогичной технологии со стороны AMD, то здесь компания Intel значительно опередила своих конкурентов.

ПРЕИМУЩЕСТВА МНОГОЯДЕРНЫХ.

Итак, создание многоядерных процессоров можно считать логическим развитием технологии HyperThreading. Производители стараются разделить работу CPU на множество потоков, которые процессорные ядра смогут обрабатывать параллельно. Однако для этого многоядерность должна полностью поддерживаться не только операционной системой, но и конкретными программами. Сейчас же, несмотря на доминирование «многоядерников» на рынке, количество оптимизированных под них приложений минимально. Обычно здесь идет речь о мультимедийных или узкоспециализированных программах, которые, в большинстве своем, «дружат» с новыми процессорами и используют всю мощь их ядер. С игровыми продуктами ситуация следующая: многие игры уже оптимизированы для работы с двумя и четырьмя ядрами, а со временем будут использоваться и многоядерные ресурсы современных CPU. Пока же наиболее практично и актуально в мире компьютеров смотрятся процессоры с четырьмя ядрами, а шести- и восьмиядерные чипы, пожалуй, стоит покупать лишь в том случае, если вы собираетесь запускать на своей системе программы с поддержкой многопоточности.

МИНУСЫ МНОГОЯДЕРНЫХ CPU

Недостатков у шести- и восьмиядерных процессоров куда больше. Одним из самых важных является внушительное энергопотребление, а значит, сильное тепловыделение и высокие температуры чипа при работе под нагрузкой. Производители борются с этим, осваивая все более «тонкие» технологические процессы и разрабатывая более совершенные схемы питания. Также тормозит массовое развитие «многоядерников» уже упомянутый дефицит соответствующего программного обеспечения: большая часть потенциала микрочипа остается попросту нереализованной. Кроме того, себестоимость многоядерных процессоров пока обуславливает отнюдь не привлекательную для рядового пользователя цену, которая тоже сдерживает спрос.

Результаты тестирования: Intel - быстрее, AMD - выгоднее

Для тестирования мы выбрали лучшие многоядерные процессоры от компаний Intel и AMD различных категорий. Наиболее интересным нам казалось противостояние «исполинов», только сошедших с конвейера, - первого в мире восьмиядерного чипа AMD FX-8150 на базе микроархитектуры Bulldozer и мощного «шестиядерника» Intel Core i7-3960X. К сожалению, никакой борьбы не получилось: чип от Intel на базе микроархитектуры Sandy Bridge-E значительно опередил по производительности грозный, казалось бы, «бульдозер» AMD. Более того, новый процессор от AMD потерпел сокрушительное поражение по всем фронтам, проиграв по итогам двух тестов даже далеко не новому AMD Phenom II Х4 980 BE с четырьмя ядрами.
Приятно удивил еще один четырехъядерный CPU - Intel Core i7 2600К. Выпушенный в начале прошлого года, он лишь немного отстал по производительности от своего старшего «собрата» - и это при том, что последний стоит в три раза дороже. Еще один баснословно дорогой шестиядерный CPU Intel Core i7-990X линейки Extreme Edition показывал неплохие результаты при тестировании, но в итоге проиграл более дешевому четырехъядерному чипу Intel Core i7-2600K. А эффективнее всего, как ни странно, многоядерность оказалась реализована у шестиядерного AMD Phenom II Х6 HOOT Black Edition, который при весьма демократичной цене в тесте Gordian Knot умудрился выиграть целых 39 с (29%) у заклятых соперников Intel Core i73960Х и Intel Core i7-2600K. Последние, правда, немного отыгрались в заключительном раунде, набрав чуть больше FPS в игре Unreal Tournament III, которая обеспечивает поддержку многоядерных CPU.
Таким образом, если речь идет об абсолютной мощности центрального процессора вне зависимости от его стоимости, здесь нет равных современным чипам от компании Intel. Если же мы попробуем теоретически подсчитать эффективность работы конкретного? CPU от каждой затраченной на его покупку копейки, то выиграют как раз модели производства AMD в целом и шестиядерный AMD Phenom II Х6 1100Т Black Edition в частности.

Тенденции развития: что обещает нам будущее?

Как будет выглядеть компьютерный микропроцессор через несколько дет? Давайте попробуем заглянуть в будущее, основываясь на известных сегодня разработках и планах производителей. Компания Intel остается верна своей стратегии «Тик-Так» и использует плавный переход на новые микроархитектуру и технологический процесс. В рамках этапа «Так» была представлена Sandy Bridge-E, теперь же следующей ступенью «Тик» в нынешнем году станет переключение производства на 22-нанометровый технологический процесс с помощью уникальных трехмерных транзисторов Intel 3D Tri-Gate и выпуск новых восьмиядерных процессоров на базе микроархитектуры Ivy Bridge. Однако одновременно идет работа нал следующими этапами создания CPU: не так давно исполнительный директор Intel Пол Отеллини заявил, что компания уже закончила разработку архитектуры Haswell, которая должна стать преемником Ivy Bridge в 2013 году.
У фирмы AMD на рынке центральных процессоров разработки, похоже, продвигаются со сложностями. Анонсированный ранее выпуск CPU Komodo неожиданно был отменен - на смену им придет новое семейство многоядерных (до восьми включительно) чипов AMD Vishera на основе архитектуры Piledriver (логическое развитие системы Bulldozer) и новой платформы Volan.
Аналитики предполагают, что в ближайшие годы нынешняя модель процессоростроения не изменится. У Кремний, которому уже давно предрекают «уход на пенсию», останется основной строительной
единицей. Впрочем, ему дышат в спину новые интересные элементы, например графон - кристалл углерода с миниатюрной толщиной в один атом. А в более отдаленной перспективе процессоры столкнутся с революционными изменениями, что приведет к появлению квантовых, оптических и даже молекулярных компьютеров.

Это интересно: экспериментальные многоядерные чипы

2006 год. Intel представила прототип 80-ядерного CPU, изготовленного по 32-нанометровому технологическому процессу.
2009 год. Компания Tilera продемонстрировала прототип серверного 100-ядерного процессора, в котором каждое ядро представляет собой отдельный чип с кеш-памятью первого и второго уровней.
2009 год. Intel показала «облачный» компьютер, представляющий собой 48-ядерный CPU. При этом все 48 ядер такого ПК сообщаются между собой как сетевые узлы.
2011 год. Intel разработала новую микроархитектуру Many Integrated Core (MIC). Новые процессоры на ее основе получат более 50 ядер и начнут производиться по 22-нанометровому техпроцессу уже в 2012 году.
2011 год. Компания Adapteva представила 64-ядерные микропроцессоры Epiphany IV, которые показывают производительность до 70 гигафлопс (количество операций с плавающей запятой в секунду), при этом потребляя менее 1 Вт электроэнергии. Данные чипы не могут быть использованы в качестве центральных процессоров, однако компания Adapteva предлагает применять их в качестве сопроцессора для таких сложных задач, как распознавание лиц или жестов пользователя.
2012 год. Компания ZiiLabs - дочернее предприятие Creative Technology - анонсировала 100-ядерную систему на чипе ZMS-40. Пиковая производительность системы при вычислениях с плавающей запятой составила 50 гигафлопс.

Мобильные четырехъядерные процессоры

В конце прошлого года компания NVIDIA основательно взволновала всех энтузиастов выпуском мобильного процессора NVIDIA Tegra 3, который располагает пятью ядрами Cortex А9. Четыре из них работают на частоте 1,4 ГГц, но активируются только в случае необходимости, а
дополнительное, пятое ядро, разгоняясь до 500 МГц, функционирует постоянно и служит для решения простых задач. Ищите качественные, рабочие прокси листы, можно купить свежие списки прокси по минимальной цене. Подобная технология позволяет значительно снизить энергопотребление CPU. Первым устройством на основе нового процессора стал планшет ASUS Transformer Prime. Кроме того, не стоит забывать об амбициозных планах компании AMD, которая, в частности, обещает выпустить в этом году четырехъядерный мобильный чип со встроенным графическим ядром под кодовым названием Trinity с поддержкой DirectX 11.

Когда вы покупаете новый ноутбук или строите компьютер, процессор является самым важным решением. Но там есть много жаргона, особенно что касается ядер. Какой процессор выбрать: двухъядерный, четырехъядерный, шестиядерный или восьмиядерный. Прочитайте статью чтобы понять, что это на самом деле означает.

Двухъядерный или четырехъядерный, как можно проще

Давайте сделаем все просто. Вот все, что вам нужно знать:

  • Существует только один процессорный чип. У этого чипа может быть одно, два, четыре, шесть или восемь ядер.
  • В настоящее время 18-ядерный процессор - это лучшее, что можно получить на потребительских ПК.
  • Каждое «ядро» является частью чипа, который выполняет обработку. По сути, каждое ядро является центральным процессором (CPU).

Скорость

Теперь простая логика диктует, что больше ядер сделает ваш процессор быстрее в целом. Но это не всегда так. Это немного сложнее.

Больше ядер дают большую скорость только если программа может разделить свои задачи между ядрами. Не все программы предназначены для разделения задач между ядрами. Подробнее об этом позже.

Тактовая частота каждого ядра также является решающим фактором скорости, как и архитектура. Более новый двухъядерный процессор с более высокой тактовой частотой часто превосходит старый четырехъядерный процессор с более низкой тактовой частотой.

Потребляемая мощность

Больше ядер также приводит к более высокому потреблению энергии процессором. Когда процессор включен, он подает питание на все ядра, а не только на задействованные.

Производители чипов стараются снизить энергопотребление и сделать процессоры более энергоэффективными. Но, общее правило гласит что, четырехъядерный процессор будет потреблять больше энергии с вашего ноутбука нежели двухъядерный (и, следовательно, быстрее разряжается аккумулятор).

Выделение тепла

Каждое ядро, влияет на тепло, генерируемое процессором. И опять же, общее правило, больше ядер приводит к более высокой температуре.

Из-за этого дополнительного тепла, производители должны добавить лучшие радиаторы или другие решения для охлаждения.

Цена

Больше ядер не всегда выше цены. Как мы уже говорили ранее, в игру вступают тактовая частота, архитектурные версии и другие соображения.

Но если все остальные факторы одинаковы, тогда больше ядер будет получать более высокую цену.

Все о программном обеспечении

Вот маленький секрет, который производители процессоров не хотят, чтобы вы знали. Речь идет не о том, сколько ядер вы используете, а о том, какое программное обеспечение вы используете на них.

Программы должны быть специально разработаны, чтобы использовать преимущества нескольких процессоров. Такое «многопоточное программное обеспечение» не так распространено, как вы думаете.

Важно отметить, что даже если это многопоточная программа, также важно то, для чего она используется. Например, веб-браузер Google Chrome поддерживает несколько процессов, а также программное обеспечение для редактирования видео Adobe Premier Pro.

Adobe Premier Pro предлагает различные ядра для работы над различными аспектами вашего редактирования. Учитывая многие слои, связанные с редактированием видео, это имеет смысл, так как каждое ядро может работать над отдельной задачей.

Аналогично, Google Chrome предлагает разным ядрам работать на разных вкладках. Но в этом и заключается проблема. После того как вы откроете веб-страницу на вкладке, она обычно статична после этого. Нет необходимости в дальнейшей обработке; остальная часть работы заключается в сохранении страницы в ОЗУ. Это означает, что даже если ядро можно использовать для закладки фона, в этом нет никакой необходимости.

Этот пример Google Chrome представляет собой иллюстрацию того, как даже многопоточное программное обеспечение может не дать вам большой реальный прирост производительности.

Два ядра не удваивают скорость

Итак, допустим, у вас есть правильное программное обеспечение, и все ваше другое оборудование одинаково. Будет ли четырехъядерный процессор в два раза быстрее, чем двухъядерный процессор? Нет.

Увеличение ядер не затрагивает программную проблему масштабирования. Масштабирование до ядер - теоретическая способность любого программного обеспечения назначать правильные задачи на правильные ядра, поэтому каждое ядро вычисляет с оптимальной скоростью. Это не то, что происходит на самом деле.

В действительности задачи разбиваются последовательно (что делает большинство многопоточных программ) или случайным образом. Например, скажем, вам нужно выполнить три задачи, чтобы закончить действие, и у вас есть пять таких действий. Программное обеспечение сообщает ядру 1 решить задачу 1, в то время как ядро 2 решает вторую, ядро 3 третью; между тем, ядро 4 простаивает.

Если третья задача самая сложная и длинная, тогда было бы разумно, чтобы программное обеспечение разделило третью задачу между ядрами 3 и 4. Но это не то, что она делает. Вместо этого, хотя ядро 1 и 2 выполнят задачу быстрее, действие должно будет дождаться завершения ядра 3, а затем вычислить результаты ядер 1, 2 и 3 вместе.

Все это окольный способ сказать, что программное обеспечение, как и сегодня, не оптимизировано, чтобы в полной мере использовать преимущества нескольких ядер. И удвоение ядер не равно удвоению скорости.

Где больше ядер реально помогут?

Теперь, когда вы знаете, что делают ядра и их ограничения в повышении производительности, вы должны спросить себя: «Нужно ли мне больше ядер?» Ну, это зависит от того, что вы планируете с ними делать.

Если вы часто играете в компьютерные игры, то больше ядер на вашем ПК несомненно вам пригодятся. Подавляющее большинство новых популярных игр от крупных студий поддерживают многопоточную архитектуру. Видеоигры по-прежнему в значительной степени зависят от того, какая видеокарта у вас стоит, но многоядерный процессор тоже помогает.

Для любого профессионала, который работает с видео или аудиопрограммами, больше ядер будет полезно. Большинство популярных аудио- и видеомонтажных инструментов используют многопоточную обработку.

Фотошоп и дизайн

Если вы дизайнер, то более высокая тактовая частота и больше кэш-памяти процессора будут увеличиваться скорость лучше, чем больше ядер. Даже самое популярное программное обеспечение для проектирования, Adobe Photoshop, в значительной степени поддерживает однопоточные или слегка поточные процессы. Множество ядер не будет значительным стимулом для этого.

Более быстрый веб-просмотр

Как мы уже говорили, наличие большего количества ядер не означает более быстрый просмотр веб-страниц. В то время как все современные браузеры поддерживают архитектуру многопроцессорных процессов, ядра помогут только в том случае, если ваши фоновые вкладки являются сайтами, для которых требуется большая вычислительная мощность.

Офисные задачи

Все основные приложения Office однопоточные, поэтому четырехъядерный процессор не будет увеличивать скорость.

Нужно ли вам больше ядер?

В целом, четырехъядерный процессор будет работать быстрее, чем двухъядерный процессор для общих вычислений. Каждая программа, которую вы открываете, будет работать на своем собственном ядре, поэтому, если задачи будут разделены, скорости будут лучше. Если вы используете много программ одновременно, часто переключайтесь между ними и назначаете им свои собственные задачи, выбирайте процессор с большим количеством ядер.

Просто знайте это: общая производительность системы - это одна из областей, в которой слишком много факторов. Не ожидайте магического повышения производительности, заменив всего один компонент, даже такой как процессор.







2024 © gtavrl.ru.