Спутниковые системы навигации gps и глонасс. Разработка дифференциальных подсистем глонасс в россии


На смену бумажным картам местности пришли карты электронные, навигация по которым осуществляется с помощью спутниковой системы GPS. Из данной статьи вы узнаете, когда появилась спутниковая навигация, что представляет из себя сейчас и что ждет ее в ближайшем будущем.

Во время Второй мировой войны у флотилий США и Великобритании появился весомый козырь – навигационная система LORAN, использующая радиомаяки. По окончанию боевых действий технологию в свое распоряжение получили гражданские суда «про-западных» стран. Спустя десятилетие СССР ввела в эксплуатацию свой ответ – навигационная система «Чайка», основанная на радиомаяках, используется по сей день.

Но у наземной навигации есть существенные недостатки: неровности земного рельефа становятся преградой, а влияние ионосферы негативно сказывается на времени передачи сигнала. Если между навигационным радиомаяком и судном слишком большое расстояние, погрешность определения координат может измеряться километрами, что недопустимо.

На смену наземным радиомаякам пришли спутниковые навигационные системы для военных целей, первая из которых – американская Transit (другое название NAVSAT) – была запущена в 1964 году. Шесть низкоорбитальных спутников обеспечивали точность определения координат до двух сотен метров.


В 1976 году СССР запустила аналогичную военную навигационную систему «Циклон», а через три года – еще и гражданскую под названием «Цикада». Большим недостатком ранних систем спутниковой навигации было то, что пользоваться ими можно было лишь короткое время на протяжении часа. Низкоорбитальные спутники, да еще и в малом количестве, были не способны обеспечить широкое покрытие сигнала.

GPS vs. ГЛОНАСС

В 1974 году армия США вывела на орбиту первый спутник новой в то время системы навигации NAVSTAR, которую позже переименовали в GPS (Global Positioning System). В середине 1980-х технологию GPS разрешили использовать гражданским кораблям и самолетам, но на протяжении длительного времени им было доступно в разы менее точное позиционирование, чем военным. Двадцать четвертый спутник GPS, последний требовавшийся для полного покрытия поверхности Земли, запустили в 1993 году.

В 1982 году свой ответ представила СССР – им стала технология ГЛОНАСС (Глобальная навигационная спутниковая система). Завершающий 24-й спутник ГЛОНАСС вышел на орбиту в 1995 году, но малый срок эксплуатации спутников (три-пять лет) и недостаточное финансирование проекта почти на десятилетие вывели систему из строя. Восстановить всемирное покрытие ГЛОНАСС удалось только в 2010 году.


Чтобы избежать подобных сбоев, и GPS, и ГЛОНАСС сейчас используют 31 спутник: 24 основных и 7 резервных, как говорится, на всякий «пожарный» случай. Летают современные навигационные спутники на высоте порядка 20 тыс. км и за сутки успевают дважды облететь Землю.

Принцип работы GPS

Позиционирование в сети GPS проводится путем измерения расстояния от приемника до нескольких спутников, местоположение которых в текущий момент времени точно известно. Расстояние до спутника измеряется путем умножения задержки сигнала на скорость света.
Связь с первым спутником дает информацию лишь о сфере возможных расположений приемника. Пересечение двух сфер даст окружность, трех – две точки, а четырех – единственно верную точку на карте. В роли одной из сфер чаще всего используют нашу планету, что позволяет вместо четырех спутников позиционироваться только по трем. В теории точность позиционирования GPS может достигать 2 метров (на практике же погрешность значительно больше).


Каждый спутник отправляет приемнику большой набор информации: точное время и его поправку, альманах, данные эфемерид и параметры ионосферы. Сигнал точного времени требуется для измерения задержки между его отправкой и приемом.

Навигационные спутники оснащаются высокоточными цезиевыми часами, тогда как приемники – куда менее точными кварцевыми. Поэтому для проверки времени осуществляется контакт с дополнительным (четвертым) спутником.


Но ошибаться могут и цезиевые часы, поэтому их сверяют с размещенными на земле водородными часами. Для каждого спутника в центре управления системой навигации индивидуально рассчитывается поправка времени, которая впоследствии вместе с точным временем отправляется приемнику.

Еще одним важным компонентом системы спутниковой навигации является альманах, который представляет собой таблицу параметров орбит спутников на месяц вперед. Альманах, как и поправка времени, рассчитываются в центре управления.


Передают спутники и индивидуальные данные эфемерид, на основе которых вычисляются отклонения орбиты. А учитывая что скорость света нигде кроме вакуума не постоянна, в обязательном порядке учитывается задержка сигнала в ионосфере.

Передача данных в сети GPS ведется строго на двух частотах: 1575,42 МГц и 1224,60 МГц. Разные спутники транслируют сигнал на одной и той же частоте, но используют кодовое разделение каналов CDMA. То есть сигнал спутника – всего лишь шум, раскодировать который можно только при наличии соответствующего PRN-кода.


Вышеописанный подход позволяет обеспечить высокую помехоустойчивость и использовать узкий частотный диапазон. Тем нее менее, иногда GPS-приемникам все равно приходится подолгу искать спутники, что вызвано рядом причин.

Во-первых, приемник изначально не знает, где находится спутник, удаляется он или приближается и какое смещение частоты его сигнала. Во-вторых, контакт со спутником считается удачным только тогда, когда от него получен полный набор информации. Скорость же передачи данных в сети GPS редко превышает показатель 50 бит/с. А стоит сигналу оборваться из-за радиопомех, как поиск начинается заново.


Будущее спутниковой навигации

Сейчас GPS и ГЛОНАСС широко применяются в мирных целях и, по сути, являются взаимозаменяемыми. Новейшие навигационные чипы поддерживают оба стандарта связи и подключаются к тем спутникам, которые находят первыми.

Американская GPS и российская ГЛОНАСС – далеко не единственные в мире системы спутниковой навигации. К примеру, Китай, Индия и Япония начали развертывать собственные ССН под названием BeiDou, IRNSS и QZSS соответственно, которые будут действовать только внутри своих стран, а потому потребуют сравнительно малого количества спутников.

Но самый большой интерес, пожалуй, вызывает проект Galileo, который разрабатывается Европейским союзом и должен быть запущен на полную мощность до 2020 года. Изначально Galileo задумывалась как сугубо европейская сеть, но о своем желании поучаствовать в ее создании уже заявили страны Ближнего Востока и Южной Америки. Так что в скором времени на рынке глобальных ССН может появиться «третья сила». Если и эта система будет совместима с существующими, а скорей всего так и будет, потребители только выиграют – скорость поиска спутников и точность позиционирования должны вырости.

До сих пор сложно поверить, что в наш век "дикой" коммерции существует абсолютно бесплатная (при наличии технических средств) возможность определения своего местоположения в любой точке земного шара. Это одно из величайших изобретений XX века! Эта многомиллиардная по своим капиталовложениям система (сегодня их несколько) задумывалась прежде всего в интересах обороны (и науки), но прошло совсем немного времени и ей ежедневно стал пользоваться почти каждый человек. Под gps навигатором будем понимать специальное радиоприёмное устройство для определения географических координат текущего местоположения (позиционирования).

К написанию этого поста меня подтолкнула фраза известного в узких кругах туриста про навигатор Garmin Etrex 30x.
Вот цитата из его статьи : "Спутниковая система: GPS/GPS+Глонасс/Демо режим. Не наводит ни на какую мысль то, что только Глонасс включить нельзя? Так вот его там и нету. В инструкции об этом ничего не сказано. Можете смеха ради взять в одну руку Garmin, а в другую смартфон с Глонассом, открыть экран отображения спутников и попытаться найти похожие. Это просто эмуляция, так что что вы поставите GPS или GPS+GLONASS не важно."
Как вам такое заявление? Только не кидайтесь тапками сразу проверять. Поскольку тут фигурируют понятия "GPS", "GLONASS" и "Garmin", то придется раскрыть тему полностью.

1 - GPS
Первой системой глобального позиционирования стала американская система NAVSTAR, которая берет своё начало в 1973 году. Уже в 1978 году был запущен первый спутник, что можно считать началом эры Global Positioning System (GPS), а в 1993 году орбитальная группировка насчитывала 24 космических аппаратов (КА), но только в 2000 году (после деактивации режима селективного доступа) началась штатная эксплуатация для гражданских пользователей.
Спутники NAVSTAR находятся на высоте 20200 км с наклонением 55° (в шести плоскостях) и периодом обращения 11 часов 58 минут. В GPS используется Всемирная геодезическая система 1984 года (World Geodetic System - WGS-84), что стало стандартом систем координат для всего мира. ВСЕ навигаторы определяют местоположение (показывают координаты) в этой системе по умолчанию.

Группировка на сегодняшний день состоит из 32 спутников. Самый ранний в системе от 22 ноября 1993 года, самый поздний (последний) - 9 декабря 2015 года.


()

2 - ГЛОНАСС
Отечественная навигационная система началась с системы "Цикада" в составе четырех спутников в 1979 году. Система ГЛОНАСС была принята в опытную эксплуатацию в 1993 году. В 1995 году развернута орбитальная группировка полного состава (24 КА «Глонасс» первого поколения) и начата штатная эксплуатация системы. С 2004 года запускаются новые КА "Глонасс-М", которые транслируют два гражданских сигнала на частотах L1 и L2.
Спутники ГЛОНАСС находятся на высоте 19400 км с наклонением 64,8° (в трех плоскостях) и периодом 11 часов 15 минут.

Группировка на сегодняшний день состоит из 24 спутников. Самый ранний в системе от 3 апреля 2007 года, самый поздний (последний) - 16 октября 2017 года.


()

Таблица с номерами спутников ГЛОНАСС. Есть номер ГЛОНАСС и номер COSMOS. В наших смартфонах совсем другие номера спутников. От 1 это GPS, от 68 - ГЛОНАСС.
Более того - они даже другие в навигаторе и смартфоне.

Теперь посмотрим на программу "Orbitron". Днём 4 апреля на небосводе в Ижевске "пролетало" 10 спутников системы ГЛОНАСС.

Или в другом представлении - на карте. Есть все данные о каждом спутнике.


Основное отличие двух систем - это сигнал и его структура.
В системе GPS используется кодовое разделение каналов . Сигнал с кодом стандартной точности (C/A-код), передаваемый в диапазоне L1 (1575,42 МГц). Сигналы модулируются псевдослучайными последовательностями двух типов: C/A-код и P-код. C/A - общедоступный код - представляет собой PRN с периодом повторения 1023 цикла и частотой следования импульсов 1,023 МГц.
В системе ГЛОНАСС частотное разделение каналов . Все спутники используют одну и ту же псевдослучайную кодовую последовательность для передачи открытых сигналов, однако каждый спутник передаёт на разной частоте, используя 15-канальное разделение по частоте. Навигационные радиосигналы с частотным разделением в двух диапазонах: L1 (1,6 ГГц) и L2 (1,25 ГГц).
Структура сигнала так же различна. Для описания движения спутников по орбите используются принципиально разные математические модели. У GPS - это модель в оскулирующих элементах. Эта модель подразумевает, что траектория движения спутника разбивается на участки, на которых движения описывается кеплеровской моделью, параметры которой меняются во времени. В системе ГЛОНАСС используется дифференциальная модель движения.
Теперь к вопросу о возможности совмещения. 2011 год прошёл под эгидой поддержки ГЛОНАСС. При проектировании приёмников, важно было преодолеть проблемы несовместимости аппаратной поддержки ГЛОНАСС и GPS. То есть частотно-модулированный сигнал ГЛОНАСС потребовал более широкой полосы частот, чем сигналы импульсно-кодовой модуляции, используемые GPS, полосовых фильтров с разными центрами частот и разной скоростью передачи элементов сигнала. Для экономии энергии в навигаторах рекомендуется включить режим "только GPS".

3 - Garmin
Американская компания-производитель портативных навигационных устройств получила всемирную известность в первую очередь благодаря туристическим GPS навигаторам (серии GpsMap, eTrex, Oregon, Montana, Dakota) и автомобильным навигаторам, спортивным часам и эхолотам. Штаб-квартира находится в городе Олэт (штат Канзас). C 2011 года компания Garmin начала продажи навигаторов GPSMAP 62stc с возможностью приема и обработки сигнала от спутников GPS и GLONASS. Однако информация о используемых производителях чипов стала коммерческой тайной.

Применение двухсистемных приемников помогает повысить качество навигации в реальных условиях, на точности же определения координат двухсистемность никак не отражается. Недостаточный сигнал от спутников одной системы в данном месте и в данное время компенсируется спутниками другой системы. Максимальное число "видимых" спутников на небосводе в идеальных условиях: GPS - 13, ГЛОНАСС - 10. Именно по этой причине большинство обычных (не геодезических) приемников 24-х канальные.

Вот результаты теста от 2016 года. К сведению - НАП-4 и НАП-5 используют навигационные приемники ижевского радиозавода МНП-М7 и МНП-М9.1 соответственно.

Выводы. Лучшие результаты по точности позиционирования на маршруте эксперимента показали НАП-1, НАП-2, НАП-4. У всех НАП точность позиционирования достаточна для уверенной навигации во всех режимах. При этом точность позиционирования в режиме GPS и в совмещенном режиме несколько лучше, чем в режиме ГЛОНАСС.
Результаты НАП-3 с экспериментальным ПО по точности позиционирования в плане во всех режимах хуже, чем у такого же приемника с штатным ПО (НАП-2). В точности по высоте такой разницы не наблюдается. Исключением являются большие ошибки в совмещенном режиме, вызванные разовым сбоем в работе НАП, который привел к сильным отклонениям.
Результаты НАП-5 в целом хуже, чем у НАП того же производителя предыдущего поколения (НАП-4). Наблюдалось незначительное улучшение точности позиционирования в плане в режиме ГЛОНАСС. ()

Антенна навигатора принимает спутниковые сигналы и передаёт в приемник, который обрабатывает их. Чипы для навигационных устройств, поддерживающие работу с GPS+Глонасс, сегодня производят многие компании: Qualcomm (SiRFatlas V, drol_links в Гарминах стоит приёмник STA8088EXG от одной из крупнейших европейских компаний STMicroelectronics .

Выводы для пользователей навигатора Garmin:
1. В навигаторах и часах Garmin (после 2011 года) появилась возможность выбрать (включить приём и обработку сигнала) либо GPS, либо GPS+ГЛОНАСС. Отдельно ГЛОНАСС не предусмотрен по причине того, что это Garmin (ну как америкосы включат только что-то российское?)
2. В идеальных или близких к ним условиях (степь, равнина) вторая система не обязательна. В горах, городе и северных широтах - очень желательна. Но расход энергии будет больше.
3. Уж если производители смартфонов смогли "запихать" эту возможность в свои компактные девайсы, то почему это "не получилось" у Garmin?
Удачи!

Для определения местоположения в настоящее время наиболее широкое применение нашли глобальные навигационные спутниковые системы (ГНСС): российская ГЛОНАСС и американская GPS .

В первую очередь это связано с доступностью и миниатюризацией устройств навигации. Персональный навигатор сегодня стал таким же обыденным устройством, как мобильный телефон или компьютер.

Кроме того, ГНСС обладают высокой точностью определения навигационных параметров и имеют глобальное покрытие.

Принцип работы ГНСС

Принцип определения местоположения потребителя довольно прост, как все гениальное. Зная местоположения спутников (информация содержится в навигационном сигнале спутника) и расстояние до них можно путем несложных алгебраических вычислений однозначно определить свое местоположение в некоторой трехмерной системе координат. В идеале, чтобы получить три координаты потребителя, достаточно знать информацию о трех навигационных космических аппаратах (НКА).

Однако, не все так просто оказывается на практике. Все дело в том, что в ГНСС реализован принцип беззапросных измерений дальности, т.е. определяется время прохождения информационного сигнала от спутника до потребителя. А для того, чтобы это время определить с высокой точностью необходимо синхронизировать часы спутника и навигационной аппаратуры потребителя (НАП). В связи с этим для нахождения координат и рассогласования часов НАП и ГНСС необходимо знать параметры не менее чем о 4-х спутниках.

При создании ГНСС в первую очередь учитывались такие требования, как глобальность, всепогодность, непрерывность и круглосуточность, помехозащищенность, компактность, доступность. Обеспечить выполнение всех перечисленных требований, а также достижение высоких эксплуатационных характеристик позволяет совместное функционирование трех основных сегментов:

    космического;

    наземного;

    пользовательского.


Узнайте больше

Актуальную информацию о состоянии группировки ГЛОНАСС можно узнать на сайте Информационно-аналитического центра координатно-временного
и навигационного обеспечения (ИАЦ КВНО) ФГУП ЦНИИмаш: http://glonass-iac.ru/GLONASS/ .

Космический сегмент ГЛОНАСС представляет собой орбитальную группировку из 24 НКА, расположенных в трех плоскостях по 8 спутников в каждой с высотой орбиты 19100 км и наклонением - 64,8°. Кроме того, в каждой плоскости должен находиться один резервный спутник. НКА излучают радиосигналы на собственных частотах.

Наземный сегмент состоит из космодрома, командно-измерительного комплекса и центра управления.

Ну и наконец сегмент, представляющий наибольший интерес потребителю, – пользовательский, в который входит НАП.

ГНСС сегодня

Современные отечественные приемники гражданского применения, устанавливаемые на НАП транспортных средств, работают по сигналам ГЛОНАСС (L1-диапазон, СТ-код) и GPS (L1, С/А-код) и позволяют определять (по уровню вероятности 0,95 при значении геометрического фактора не более 3):

    координаты в плане с погрешностью не более 10 м и по высоте – не более 15 м;

    плановую скорость с погрешностью не более 0,15 м/с.

На сегодняшний момент применение односистемных приемников ГНСС в НАП (только ГЛОНАСС или только GPS) практически сошло на нет. В первую очередь это связано с тем, что в условиях современного городского ландшафта неизбежно затенение радиовидимости спутников. Примером является работа НАП вблизи стены дома, когда физически половина небосвода закрыта. В конечном счете это приводит к тому, что возможности по точному позиционированию объекта снижаются, а иногда становится невозможным. Использование двух навигационных систем улучшает и расширяет возможности для потребителей.

В таких условиях использование ГЛОНАСС совместно с GPS существенно повышает надежность и достоверность работы НАП по определению координат.

На сегодняшний день навигация – вещь нужная и весьма популярная. За последние несколько лет навигационные чипы в мобильных гаджетах и другой электронике стали привычным делом. Существуют GPS и ГЛОНАСС навигационные системы, давайте разберемся, что представляет собой каждая из них и изучим принципы работы.

Что такое GPS?

GPS (расшифровывается как Global Positioning System, система глобального позиционирования) – система спутниковой навигации, обеспечивающая измерение расстояния, времени и определяющая местоположение во всемирной системе координат WGS 84. Данная система позволяет определять местоположение и скорость объектов практически в любой точке планеты (за исключением приполярных областей).

Разработка GPS началась в 1950-е годы прошлого века для Министерства обороны США, однако сейчас технология используется не только военными, но и в повседневной жизни. В то время СССР запустил первый искусственный спутник Земли и американские ученые, наблюдавшие за этим событием, заметили, что благодаря эффекту Доплера частота принимаемого сигнала возрастает при приближении спутника и снижается при увеличении его дистанции. Они пришли к выводу, что при наличии информации о своих точных координатах на Земле можно измерить положение и скорость спутника, а зная, где находится спутник – вычислить собственную скорость и координаты.

Система GPS состоит из искусственных спутников, которые вращаются на средней орбите Земли (спутниковая система NAVSTAR, разработанная в США), и наземных станций мониторинга, объединенных в общую сеть. Спутники непрерывно передают на Землю навигационный сигнал, включающий «псевдослучайный код», данные эфемерид (прогнозируемые координаты и параметры движения спутника на определенный момент времени) и альманаха (данные для вычисления приблизительного местоположения спутника). Этот сигнал принимают абонентские GPS-устройства, которые на основании полученных сведений вычисляют свою геопозицию.

Один из недостатков технологии GPS заключается в низкой скорости передачи данных (до 50 бит/с) из-за чего процесс вычисления координат может занимать несколько минут. Кроме того, система GPS неэффективна для определения координат устройства, которое находится в помещении, на территории, окруженной высокими строениями, в лесах и парках, туннелях и т.д.

Что такое A-GPS?

Для устранения этих проблем и получения возможности определять координаты любого мобильного устройства была создана технология A-GPS (Assisted GPS). При ее использовании GPS-приемник получает данные не со спутников, а из внешних источников (как правило, это сети сотовых операторов), причем распознавание сигнала A-GPS занимает менее 2 секунд.

Авторами идеи создания A-GPS стали инженеры Джими Сеннота и Ральф Тейлор, которые в 1981 году запатентовали свою разработку. Система была представлена в октябре 2001 года в США, где начала использоваться по сети службы спасения 911.

A-GPS состоит из встроенного GPS приемника и сетевых компонентов мобильной сети. Для A-GPS предусмотрено два режима: A-GPS Online (основной) и A-GPS Offline (вспомогательный). Первый позволяет получить информацию о координатах спутников при необходимости быстрого определения геопозиции, если GPS-приемник не функционировал более 2 часов. Второй режим ускоряет время «горячего» и «холодного» старта GPS-приемника. A-GPS-приемник обновляет альманах, эфемериды и список видимых спутников.

Несмотря на свою эффективность, технология A-GPS имеет ряд минусов, в частности, функция ускоренного старта не работает вне зоны действия сотовой сети. Некоторые приемники с поддержкой A-GPS объединены с радиомодулем GSM и не могут стартовать, если последний отключен. При этом A-GPS приемник может стартовать без покрытия GSM (GPRS). При старте модули A-GPS потребляют мало трафика (5-7 КБ), но в случае потери сигнала потребуется повторная синхронизация, что повлечет за собой повышенные энергозатраты, особенно при нахождении в роуминге.

Что такое ГЛОНАСС?

В настоящее время в мире существуют две спутниковые навигационные системы — описанная выше GPS и ГЛОНАСС (Глобальная навигационная спутниковая система). По сути последняя является российским вариантом GPS. По аналогии с GPS ГЛОНАСС определяет трехмерные координаты (широта, высота, долгота) по всему миру.

Начало разработки на то время советской спутниковой системы датируется декабрем 1976 года. В октябре 1982 года с выводом на орбиту ГЛОНАСС спутника «Ураган» началось первое тестирование системы. Изначально она задумывалась для военных нужд, но впоследствии стала использоваться и для гражданских целей. Сейчас ГЛОНАСС приемниками оснащаются гражданские/военные корабли и самолеты, общественный транспорт, автомобили экстренных служб и т.д. Сигналы ГЛОНАСС принимают не только GPS-приемники, бортовые навигаторы, но и мобильные телефоны. Данные о положении, скорости и направлении движения через сеть GSM-оператора отправляются на сервер сбора данных.

Гражданское применение системы ГЛОНАСС стартовало в 1993 году, в 1995 году на орбиту было запущено 24 спутника, а в 2010 году их число возросло до 26. На разработку системы в период с 2012 по 2020 годы российское правительство выделило 320 млрд рублей, направленных в том числе на создание 15 спутников «Глонасс-М» и 22 спутников «Глонасс-К». Работа над системой ГЛОНАСС была завершена в декабре 2015 года.

Спутники ГЛОНАСС вращаются на высоте 19,1 тыс. км над Землей. Приемники ГЛОНАСС позволяют определить горизонтальные (с точностью 50-70 м) и вертикальные координаты (70 м), вектор скорости (с точностью 15 см/сек), время с точностью 0,7 мкс. Система использует два типа навигационных сигналов – открытые с обычной точностью и защищенные с повышенной точностью. Первые могут принимать любые приемники ГЛОНАСС, а вторые – исключительно авторизованные пользователи, к примеру, оборудование ВС РФ.

Что такое ЭРА-ГЛОНАСС?

«ЭРА-ГЛОНАСС» — российская система экстренного реагирования при авариях и других чрезвычайных ситуациях на дороге, позволяющая в кратчайшие сроки проинформировать о происшествии службы экстренного реагирования. «ЭРА-ГЛОНАСС» работает на базе спутниковой системы ГЛОНАСС. В эксплуатацию комплекс был введен в 2015 году, а с 1 января 2017 года автопроизводители обязаны устанавливать данную систему на свои транспортные средства, выходящие на российский рынок. Данная система сокращает время реагирования при авариях и чрезвычайных ситуациях, что приводит к снижению числа смертельных исходов, травматизма на дорогах и повышению грузовых/пассажирских перевозок.

«ЭРА-ГЛОНАСС» включает в себя два компонента: инфраструктуру оператора (навигационно-информационная платформа, сеть передачи данных, сеть мобильного оператора) и устройства, которыми оборудуются транспортные средства. В случае дорожно-транспортного происшествия (система распознает различные типы столкновения – лобовое, боковое или удар сзади), устройство определяет степень тяжести аварии, местоположение пострадавшего автомобиля на основе данных спутников систем ГЛОНАСС и/или GPS, устанавливает связь с системой «ЭРА-ГЛОНАСС» и передает информацию об аварии. Сигнал обладает приоритетным статусом и передается через любого мобильного оператора с максимально сильным в данном месте сигналом. При этом, если сеть перегружена телефонными звонками, они могут быть прерваны для передачи сигнала.

Спутниковые системы мониторинга позволяют отслеживать местоположение объекта слежения в любой точки мира. Удивительная точность достигается за счет использования последних технологических разработок, спроектированных лучшими специалистами всего мира.

Такие системы это новое слова в мире управления системой транспорта, благодаря использованию спутникового мониторинга транспорта можно наладить логистисечкую систему, снизить транспортные затраты за счет быстрого нахождения путей и маршрутов отправления для доставки товаров до потребителя.

Эти системы мониторинга были разработаны для реализации сложных и чрезвычайно важных государственных программ, что говорит о надёжности их проектирования и эффективности функционирования. Сегодня такие системы стали доступены и рядовым потребителям.

На сегодняшний день спутниковые системы мониторинга используются крупными логистическими и транспортными компаниями. При этом затраты на приобретение системы мониторинга оправданы – они окупают себя уже за несколько отчетных периодов использования.

Они зарекомендовали себя во многих областях, с каждым годом их возможности увеличиваются, а стоимость приобретения становится всё более доступной не только для крупных – транснациональных корпораций, но и для более мелких компаний.

Так, эти системы эффективно используется небольшими компаниями, предоставляющими услуги транспортировки, в том числе и услуги такси. Такой мониторинг в сфере такси позволяет быстро и точно отследить местоположение машины, тем самым сэкономить человеческие ресурсы, таким образом, со временем можно автоматизировать систему служб такси и повысить эффективность деятельности.

Наши системы – это то, что нужно современному обществу, то, что сделает жизнь безопаснее, а предпринимательскую деятельность эффективнее.

Спутниковый мониторинг транспорта

ГЛОНАСС

Общая справка ГЛОНАСС

Российская ГЛОбальная НАвигационная Спутниковая Система (ГЛОНАСС) предназначена для оперативного глобального навигационно-временного обеспечения неограниченного числа потребителей наземного, морского, воздушного и космического базирования. Система была принята в эксплуатацию в 1993 году.

ГЛОНАСС является государственной системой, которая разрабатывалась как система двойного использования, предназначенная для нужд Министерства обороны и гражданских потребителей.

С 1996 года по предложению Правительства Российской Федерации ГЛОНАСС наряду с американской GPS используется Международной организацией гражданской авиации и Международной морской организацией.

В соответствии с Указом Президента Российской Федерации доступ к гражданским навигационным сигналам системы ГЛОНАСС предоставляется российским и иностранным потребителям на безвозмездной основе и без ограничений.

Основу орбитальной группировки ГЛОНАСС составляют спутники нового поколения <Глонасс-М>. В ближайшее время планируется начать летные испытания космических аппаратов нового поколения <Глонасс-К> с техническими характеристиками, сопоставимыми с лучшими мировыми аналогами.

Обязанности по управлению и эксплуатации системы ГЛОНАСС возложены на Министерство обороны Российской Федерации.

История развития системы

Первый спутник ГЛОНАСС был выведен Советским Союзом на орбиту 12 октября 1982 года. 24 сентября 1993 года система была официально принята в эксплуатацию с орбитальной группировкой из 12 спутников. В декабре 1995 года спутниковая группировка была развернута до штатного состава - 24 спутника.

Вследствие недостаточного финансирования, а также из-за малого срока службы, число работающих спутников сократилось к 2001 году до 6.

В августе 2001 года была принята федеральная целевая программа «Глобальная навигационная система», согласно которой полное покрытие территории России планировалось уже в начале 2008 года, а глобальных масштабов система достигла бы к началу 2010 года. Для решения данной задачи планировалось в течение 2007, 2008 и 2009 годов произвести шесть запусков РН и вывести на орбиту 18 спутников - таким образом, к концу 2009 года группировка вновь насчитывала бы 24 аппарата.

В конце марта 2008 года совет главных конструкторов по российской глобальной навигационной спутниковой системе (ГЛОНАСС), заседавший в Российском научно-исследовательском институте космического приборостроения, несколько скорректировал сроки развёртывания космического сегмента ГЛОНАСС. Прежние планы предполагали, что на территории России системой станет возможно пользоваться уже к 31 декабря 2007 года; однако для этого требовалось 18 работающих спутников, некоторые из которых успели выработать свой гарантийный ресурс и прекратили работать. Таким образом, хотя в 2007 году план по запускам спутников ГЛОНАСС был выполнен (на орбиту вышли шесть аппаратов), орбитальная группировка по состоянию на 27 марта 2008 года включала лишь шестнадцать работающих спутников. 25 декабря 2008 года количество было доведено до 18 спутников.
На совете главных конструкторов ГЛОНАСС план развёртывания системы был скорректирован с той целью, чтобы на территории России система ГЛОНАСС заработала хотя бы к 31 декабря 2008 года. Прежние планы предполагали запуск на орбиту двух троек новых спутников «Глонасс-М» в сентябре и в декабре 2008 года; однако в марте 2008 года сроки изготовления спутников и ракет были пересмотрены, чтобы ввести все спутники в эксплуатацию до конца года. Предполагалось, что запуски состоятся раньше на два месяца и система до конца года в России заработает. Планы были реализованы в срок.

В ноябре 2009 года было объявлено, что Украинский научно-исследовательский институт радиотехнических измерений (Харьков) и Российский научно-исследовательский институт космического приборостроения (Москва) создадут совместное предприятие. Стороны создадут систему спутниковой навигации для обслуживания потребителей на территории двух стран. В проекте будут использованы украинские станции коррекции для уточнения координат систем ГЛОНАСС.

15 декабря 2009 года на встрече премьер-министра России Владимира Путина с главой Роскосмоса Анатолием Перминовым было заявлено, что развёртывание ГЛОНАСС будет окончено к концу 2010 года.

С переходом на спутники «Глонасс-К» точность системы ГЛОНАСС станет сопоставимой с точностью американской навигационной системы NAVSTAR GPS - единственной зарубежной развернутой навигационной системой.

02 сентября 2010г. группировка спутников пополнена еще 3 спутниками и общее количество спутников в группировке доведено до 26ед.

GPS

История

Идея создания спутниковой навигации родилась ещё в 50-е годы. В тот момент, когда СССР был запущен первый искусственный спутник Земли, американские учёные во главе с Ричардом Кершнером, наблюдали сигнал, исходящий от советского спутника и обнаружили, что благодаря эффекту Доплера частота принимаемого сигнала увеличивается при приближении спутника и уменьшается при его отдалении. Суть открытия заключалась в том, что если точно знать свои координаты на Земле, то становится возможным измерить положение и скорость спутника, и наоборот, точно зная положение спутника, можно определить собственную скорость и координаты.

Реализована эта идея была через 20 лет. Первый тестовый спутник выведен на орбиту 14 июля 1974 г США, а последний из всех 24 спутников, необходимых для полного покрытия земной поверхности, был выведен на орбиту в 1993 г., таким образом, GPS встала на вооружение. Стало возможным использовать GPS для точного наведения ракет на неподвижные, а затем и на подвижные объекты в воздухе и на земле.

Первоначально GPS - глобальная система позиционирования, разрабатывалась как чисто военный проект. Но после того, как в 1983 году был сбит вторгшийся в воздушное пространство Советского Союза самолёт Корейских Авиалиний с 269 пассажирами на борту, президент США Рональд Рейган разрешил частичное использование системы навигации для гражданских целей. Во избежание применения системы для военных нужд точность была уменьшена специальным алгоритмом.

Затем появилась информация о том, что некоторые компании расшифровали алгоритм уменьшения точности на частоте L1 и с успехом компенсируют эту составляющую ошибки. В 2000 г. это загрубление точности было отменено указом президента США.

Наземные станции контроля космического сегмента

Слежение за орбитальной группировкой осуществляется с главной контрольной станции, расположенной на авиабазе ВВС США Schriever, штат Колорадо, США и с помощью 10 станций слежения, из них три станции способны посылать на спутники корректировочные данные в виде радиосигналов с частотой 2000-4000 МГц. Спутники последнего поколения распределяют полученные данные среди других спутников.

Применение GPS

Несмотря на то, что изначально проект GPS был направлен на военные цели, сегодня GPS всё чаще используются в гражданских целях. GPS-приёмники продают во многих магазинах, торгующих электроникой, их встраивают в мобильные телефоны, смартфоны, КПК и онбордеры. Потребителям также предлагаются различные устройства и программные продукты, позволяющие видеть своё местонахождение на электронной карте; имеющие возможность прокладывать маршруты с учётом дорожных знаков, разрешённых поворотов и даже пробок; искать на карте конкретные дома и улицы, достопримечательности, кафе, больницы, автозаправки и прочие объекты инфраструктуры.

  • Геодезия: с помощью GPS определяются точные координаты точек и границы земельных участков.
  • Картография: GPS используется в гражданской и военной картографии.
  • Навигация: с применением GPS осуществляется как морская так и дорожная навигация.
  • С помощью GPS ведётся мониторинг за положением, скоростью автомобилей, контроль за их движением.
  • Сотовая связь: первые мобильные телефоны с GPS появились в 90-х годах. В некоторых странах, например США это используется для оперативного определения местонахождения человека, звонящего 911. В России в 2010 году начата реализация аналогичного проекта — Эра-глонасс.
  • Тектоника, Тектоника плит: с помощью GPS ведутся наблюдения движений и колебаний плит.
  • Активный отдых: есть разные игры, где применяется GPS, например, Геокэшинг и др.
  • Геотегинг: информация, например фотографии «привязываются» к координатам благодаря встроенным или внешним GPS-приёмникам.

Точность

Типичная точность современных GPS-приёмников в горизонтальной плоскости составляет примерно 10-12 метров при хорошей видимости спутников (такая же как и у ГЛОНАСС). На территории США и Канады имеются станции WAAS, передающие поправки для дифференциального режима, что позволяет снизить погрешность до 1-2 метров на территории этих стран. при использовании более сложных дифференциальных режимов, точность определения координат можно довести до 10 см. К сожалению точность любой СНС сильно зависит от открытости пространства, от высоты используемых спутников над горизонтом.







2024 © gtavrl.ru.